九年级上册期末数学试卷含答案参考[1]
九年级上册期末数学试卷含答案参考[1]初中三年级
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项的字母代号填在下表中相应的题号下)
1.如果一元二次方程x2﹣ax+6=0经配方后,得(x+3)2=3,则a的值为( )
A.3 B.﹣3 C.6 D.﹣6
2.在△ABC中,∠C=90°,AB=5,BC=4,则cosA的值为( )
A. B. C. D.
3.若关于x的方程x2+2x﹣k=0无实数根,则k的取值范围是( )
A.k>﹣1 B.k<﹣1 C.k>1 D.k<1
4.已知△ABC∽△DEF,且△ABC的面积与△DEF的面积之比为4:9,则AB:DE=( )
A.4:9 B.2:3 C.16:81 D.9:4
5.⊙O的直径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是( )
A.相离 B.相切 C.相交 D.相切或相交
6.若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点( )
A.(﹣4,2) B.(4,﹣2) C.(2,4) D.(﹣2,﹣4)
7.有x支球队参加中国足球超级联赛,每队都与其余各队比赛两场,如果比赛总场次为240场,问一共有多少只球队参赛,则可列方程为( )
A.x(x﹣1)=240 B.x(x﹣1)=480 C.x(x﹣2)=240 D.x(x﹣2)=480
8.下列命题中,真命题是( )
A.相等的圆心角所对的弧相等
B.面积相等的两个圆是等圆
C.三角形的内心到各顶点的距离相等
D.各角相等的圆内接多边形是正多边形
9.△ABC是⊙O的内接三角形,⊙O的直径为10,∠ABC=60°,则AC的长是( )
A.5 B.10 C.5 D.5
10.已知点A(﹣5,y1)、B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若y1>y2≥y0,则x0的取值范围是( )
A.x0>﹣1 B.x0≥﹣1 C.x0>3 D.x0≥3
二、填空题:(本大题共8小题,每小题3分,共24分.不需写出解答过程,请将答案直接填写在下面答题栏内的相应位置)
11.若x=﹣ 是关于x的一元二次方程x2﹣mx+2m=0的一个根,则m的值为 .
12.一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中红球3个,黄球2个,若从中任意摸出一个球,这个球是黄球的概率是为 ,则口袋中白球的个数为 .
13.若锐角θ满足2sinθ ,则θ= °.
14.若 ,且2a+b=18,则a的值为 .
15.若x1,x2是方程3x2﹣2x﹣1=0的两个实数根,则2x1+2x2= .
16.已知圆锥的底面积为9πcm2,其母线长为4cm,则它的侧面积等于 cm2.
17.二次函数y=x2﹣6x+3m的图象与x轴有公共点,则m的取值范值是 .
18.与三角形的一边和其他两边的延长线都相切的圆叫做这个三角形的旁切圆,其圆心叫做这个三角形的旁心.如图,△ABC的三个顶点的坐标分别为A(﹣3,0),B(3,0),C(0,4).则△ABC位于第二象限的旁心D的坐标是 .
三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)
19.解方程:
(1)x2﹣5x+6=0;
(2)x(x﹣6)=4.
20.求下列各式的值
(1)sin260°+cos60°tan45°;
(2) .
21.如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连结AC.求证:△ABC∽△POA.
22.已知二次函数y=﹣x2+2x.
(1)在给定的平面直角坐标系中,画出这个函数的图象;
(2)根据图象,写出当y<0时,x的取值范围;
(3)若将此图象沿x轴向左平移3个单位,再沿y轴向下平移1个单位,请直接写出平移后图象所对应的函数关系式.
23.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 第二次 第三次 第四初中三年级
1.如果一元二次方程x2﹣ax+6=0经配方后,得(x+3)2=3,则a的值为( )
A.3 B.﹣3 C.6 D.﹣6
2.在△ABC中,∠C=90°,AB=5,BC=4,则cosA的值为( )
A. B. C. D.
3.若关于x的方程x2+2x﹣k=0无实数根,则k的取值范围是( )
A.k>﹣1 B.k<﹣1 C.k>1 D.k<1
4.已知△ABC∽△DEF,且△ABC的面积与△DEF的面积之比为4:9,则AB:DE=( )
A.4:9 B.2:3 C.16:81 D.9:4
5.⊙O的直径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是( )
A.相离 B.相切 C.相交 D.相切或相交
6.若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点( )
A.(﹣4,2) B.(4,﹣2) C.(2,4) D.(﹣2,﹣4)
7.有x支球队参加中国足球超级联赛,每队都与其余各队比赛两场,如果比赛总场次为240场,问一共有多少只球队参赛,则可列方程为( )
A.x(x﹣1)=240 B.x(x﹣1)=480 C.x(x﹣2)=240 D.x(x﹣2)=480
8.下列命题中,真命题是( )
A.相等的圆心角所对的弧相等
B.面积相等的两个圆是等圆
C.三角形的内心到各顶点的距离相等
D.各角相等的圆内接多边形是正多边形
9.△ABC是⊙O的内接三角形,⊙O的直径为10,∠ABC=60°,则AC的长是( )
A.5 B.10 C.5 D.5
10.已知点A(﹣5,y1)、B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若y1>y2≥y0,则x0的取值范围是( )
A.x0>﹣1 B.x0≥﹣1 C.x0>3 D.x0≥3
二、填空题:(本大题共8小题,每小题3分,共24分.不需写出解答过程,请将答案直接填写在下面答题栏内的相应位置)
11.若x=﹣ 是关于x的一元二次方程x2﹣mx+2m=0的一个根,则m的值为 .
12.一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中红球3个,黄球2个,若从中任意摸出一个球,这个球是黄球的概率是为 ,则口袋中白球的个数为 .
13.若锐角θ满足2sinθ ,则θ= °.
14.若 ,且2a+b=18,则a的值为 .
15.若x1,x2是方程3x2﹣2x﹣1=0的两个实数根,则2x1+2x2= .
16.已知圆锥的底面积为9πcm2,其母线长为4cm,则它的侧面积等于 cm2.
17.二次函数y=x2﹣6x+3m的图象与x轴有公共点,则m的取值范值是 .
18.与三角形的一边和其他两边的延长线都相切的圆叫做这个三角形的旁切圆,其圆心叫做这个三角形的旁心.如图,△ABC的三个顶点的坐标分别为A(﹣3,0),B(3,0),C(0,4).则△ABC位于第二象限的旁心D的坐标是 .
三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)
19.解方程:
(1)x2﹣5x+6=0;
(2)x(x﹣6)=4.
20.求下列各式的值
(1)sin260°+cos60°tan45°;
(2) .
21.如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连结AC.求证:△ABC∽△POA.
22.已知二次函数y=﹣x2+2x.
(1)在给定的平面直角坐标系中,画出这个函数的图象;
(2)根据图象,写出当y<0时,x的取值范围;
(3)若将此图象沿x轴向左平移3个单位,再沿y轴向下平移1个单位,请直接写出平移后图象所对应的函数关系式.
23.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 第二次 第三次 第四初中三年级