作业帮 > 体裁作文 > 教育资讯

超速生化人迅雷下载

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 11:26:18 体裁作文
超速生化人迅雷下载体裁作文

篇一:电影

爱丽丝梦游仙境

阿凡达

地心历险记

最后的气功

我的野蛮女友

疯狂的石头

功夫足球

超速绯闻

星爷的两部西游

冒牌天神

热血青春

唐伯虎点秋香

举起手来

变相怪杰

大话王 都是金凯瑞的

宿醉

加勒比海盗系列

让子弹飞

三毛流浪记

宝贝计划

复仇者联盟

卑鄙的我 1,2

那些年

冰河世纪

功夫熊猫

疯狂原始人

上帝也疯狂1,2

泰迪熊

宿醉

加勒比

碟中谍1234

低俗小说

十面埋伏

舞出我人生 1234

致命快递

蜘蛛侠

决胜21点

惊天魔盗团

生化危机3

刺客联盟

碟中谍几不记得了 碟中谍4

绿巨人

恶灵骑士 应该是2

神奇四侠

电锯惊魂1

蝙蝠侠

哈利波特

冰雪奇缘

饥饿游戏

暮光之城

钢铁侠2

尼古拉斯凯奇的一部电影,不记得名字了。 预知未来

发条橙 这个不确定,因为是禁片。

拯救大兵瑞恩

虎胆龙威4

敢死队

魔法师的学徒 也是尼古拉斯凯奇的。

后天

2012

雷神

魔戒三部曲

纳尼亚传奇 123

神火之盗 波西杰克逊与魔兽之海 这两部有点搞不清,应该是都出现了。 环太平洋

创战纪

斯巴达三百勇士 勇士

超级战舰

诸神之怒2

金刚

逆世界

JACK ROSE

活死人黎明

生化危机

先知

黑鹰坠落

辛德勒的名单

出租车司机

拆弹部队

第一滴血

七宗罪

蝙蝠侠前传

熔炉

老无所依

沉默的羔羊

无人区

猎鹿人

活着

百万美元宝贝是个女拳击手的故事 美国往事

霸王别姬

英雄

逆光飞翔

非诚勿扰

乔丹传人?

致青春

宝贝计划

阿甘

当幸福来敲门

飞屋环游记

千与千寻

闻香识女人

剪刀手爱德华

早熟

肖申克的救赎

楚门的世界

罗马假日

《阿凡達》

《蝙蝠人前傳》

《復仇者聯盟》

《蜘蛛人》

《綠光戰警》

《黑夜傳說》

《雷神索爾》

《斯巴達300勇士》

《這個殺手不太冷》

《超世紀封神榜》

《最後的氣宗》

《哈利·波特》

《美國隊長》

《新特警判官》

《綠巨人》

《魔法師的學徒》

《史前一萬年》

《美少女特工隊》

《守望者》

《2012》

《超級戰艦》

《霍比人前傳》

《獨行俠》

《天使與魔鬼》

《地獄男爵2》

《波斯王子:時之刃》 《波西傑克森:神火之盜》 《鋼鐵擂台》

《黃金羅盤》

《功夫之王》

《惡靈戰警》

《金剛狼前傳》 《黑應計畫》

《環太平洋》

《末日預言》

《創:光速戰紀》 《超人:鋼鐵英雄》 《地球過後》

《隔絕》

《太陽浩劫》

《綠巨人浩克》 《異星戰場》

《惡靈古堡》

《變形金剛》

《遺落戰境》

篇二:王境岩《生物化学》(第三版)精要速览

沈同《生物化学》(第三版)精要速览

1楼:生化重点

第一章 绪论

一、生物化学的的概念:

生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:

1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:

1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是在细

胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

第二章 蛋白质的结构与功能

一、氨基酸:

1.结构特点: 氨基酸(aminoacid) 是蛋白质分子的基本组成单位。构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:① 非极性中性氨基酸(8种);②极性中性氨基酸(7种);③ 酸性氨基酸(Glu和Asp);④ 碱性氨基酸(Lys、Arg和His)。

二、 肽键与肽链:

肽键(peptidebond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端→C端。

三、肽键平面(肽单位):

肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个α碳原子处

在同一个平面上,为刚性平面结构,称为肽键平面。

四、蛋白质的分子结构:

蛋白质的分子结构可人为分为一级、二级、三级和四级结构等层次。一级结构为线状结构,

二、三、四级结构为空间结构。

1.一级结构:指多肽链中氨基酸的排列顺序,其维系键是肽键。蛋白质的一级结构决定其空间结构。

2.二级结构:指多肽链主链骨架盘绕折叠而形成的构象,借氢键维系。主要有以下几种类型:

⑴α-螺旋:其结构特征为:①主链骨架围绕中心轴盘绕形成右手螺旋;②螺旋每上升一圈是3.6个氨基酸残基,螺距为0.54nm即每个氨基酸残基上升高0.15nm;每个氨基酸残基研中心轴旋转100度;③相邻螺旋圈之间形成许多氢键;④ 侧链基团位于螺旋的外侧。 影响α-螺旋形成的因素主要是:① 存在侧链基团较大的氨基酸残基;② 连续存在带相同电荷的氨基酸残基;③存在脯氨酸残基。

⑵β-折叠:其结构特征为:① 若干条肽链或肽段平行或反平行排列成片;②

所有肽键的C=O和N—H形成链间氢键;③侧链基团分别交替位于片层的上、下方。 ⑶β-转角:多肽链180°回折部分,通常由四个氨基酸残基构成,借1、4残基之间形成氢键维系。

⑷无规卷曲:主链骨架无规律盘绕的部分。

3.三级结构:指多肽链所有原子的空间排布。其维系键主要是非共价键(次级键):氢键、疏水键、范德华力、离子键等,也可涉及二硫键。

4.四级结构:指亚基之间的立体排布、接触部位的布局等,其维系键为非共价键。亚基是指参与构成蛋白质四级结构的而又具有独立三级结构的多肽链。

五、 蛋白质的理化性质:

1.两性解离与等电点:蛋白质分子中仍然存在游离的氨基和游离的羧基,因此蛋白质与氨基酸一样具有两性解离的性质。蛋白质分子所带正、负电荷相等时溶液的pH值称为蛋白质的等电点。

2.蛋白质的胶体性质:蛋白质具有亲水溶胶的性质。蛋白质分子表面的水化膜和表面电荷是稳定蛋白质亲水溶胶的两个重要因素。

3.蛋白质的紫外吸收:蛋白质分子中的色氨酸、酪氨酸和苯丙氨酸残基对紫外光有吸收,以色氨酸吸收最强,最大吸收峰为280nm。

4.蛋白质的变性:蛋白质在某些理化因素的作用下,其特定的空间结构被破坏而导致其理化性质改变及生物活性丧失,这种现象称为蛋白质的变性。引起蛋白质变性的因素有:高温、高压、电离辐射、超声波、紫外线及有机溶剂、重金属盐、强酸强碱等。绝大多数蛋白质分子的变性是不可逆的。

六、蛋白质的分离与纯化:

1.盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。常用的中性盐有:硫酸铵、氯化钠、硫酸钠等。盐析时,溶液的pH在蛋白质的等电点处效果最好。凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。

2.电泳:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动。电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小。

3.透析:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。

4.层析:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离。主要有离子交换层析,凝胶层析,吸附层析及亲和层析等,其中

(来自:WWw.SmhaiDa.com 海达范文网:超速生化人迅雷下载)

凝胶层析可用于测定蛋白质的分子量。

5.超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离。超速离心也可用来测定蛋白质的分子量,蛋白质的分子量与其沉降系数S成正比。

七、氨基酸顺序分析:蛋白质多肽链的氨基酸顺序分析,即蛋白质一级结构的测定,主要有以下几个步骤:

1. 分离纯化蛋白质,得到一定量的蛋白质纯品;

2. 取一定量的样品进行完全水解,再测定蛋白质的氨基酸组成;

3. 分析蛋白质的N-端和C-端氨基酸;

4. 采用特异性的酶(如胰凝乳蛋白酶)或化学试剂(如溴化氰)将蛋白质处理为若干条肽段;

5. 分离纯化单一肽段;

6. 测定各条肽段的氨基酸顺序。一般采用Edman降解法,用异硫氰酸苯酯进行反应,将氨基酸降解后,逐一进行测定;

7. 至少用两种不同的方法处理蛋白质,分别得到其肽段的氨基酸顺序;

8. 将两套不同肽段的氨基酸顺序进行比较,以获得完整的蛋白质分子的氨基酸顺序。

第三章 核酸的结构与功能

一、核酸的化学组成:

1.含氮碱:参与核酸和核苷酸构成的含氮碱主要分为嘌呤碱和嘧啶碱两大类。组成核苷酸的嘧啶碱主要有三种——

尿嘧啶(U)、胞嘧啶(C)和胸腺嘧啶(T),它们都是嘧啶的衍生物。组成核苷酸的嘌呤碱主要有两种——腺嘌呤(A)和鸟嘌呤(G),它们

都是嘌呤的衍生物。

2.戊糖:核苷酸中的戊糖主要有两种,即β-D-核糖与β-D-2-脱氧核糖,由此构成的核苷酸也分为核糖核苷酸与脱氧核糖核酸两大类。

3.核苷:核苷是由戊糖与含氮碱基经脱水缩合而生成的化合物。通常是由核糖或脱氧核糖的C1’β-羟基与嘧啶碱N1或嘌呤碱N9进行缩合,故生成的化学键称为β,N糖苷键。其中由D-核糖生成者称为核糖核苷,而由脱氧核糖生成者则称为脱氧核糖核苷。由“稀有碱基”所生成的核苷称为“稀有核苷”。假尿苷(ψ)就是由D-核糖的C1’与尿嘧啶的C5相连而生成的核苷。

二、核苷酸的结构与命名:

核苷酸是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核苷酸和脱氧核糖核酸两大类。最常见的核苷酸为5’-核苷酸(5’常被省略)。5’-核苷酸又可按其在5’位缩合的磷酸基的多少,分为一磷酸核苷(核苷酸)、二磷酸核苷和三磷酸核苷。此外,生物体内还存在一些特殊的环核苷酸,常见的为环一磷酸腺苷(cAMP)和环一磷酸鸟苷(cGMP),它们通常是作为激素作用的第二信使。核苷酸通常使用缩写符号进行命名。第一位符号用小写字母d代表脱氧,第二位用大写字母代表碱基,第三位用大写字母代表磷酸基的数目,第四位用大写字母P代表磷酸。

三、核酸的一级结构:

核苷酸通过3’,5’-磷酸二酯键连接起来形成的不含侧链的多核苷酸长链化合物就称为核酸。核酸具有方向性,5’-位上具有自由磷酸基的末端称为5’-端,3’-位上具有自由羟基的末端称为3’-端。DNA由dAMP、dGMP、dCMP和dTMP四种脱氧核糖核苷酸所组成。DNA的一级结构就是指DNA分子中脱氧核糖核苷酸的种类、数目、排列顺序及连接方式。RNA由AMP,GMP,CMP,UMP四种核糖核苷酸组成。RNA的一级结构就是指RNA分子中

核糖核苷酸的种类、数目、排列顺序及连接方式。

四、DNA的二级结构:

DNA双螺旋结构是DNA二级结构的一种重要形式,它是Watson和Crick两位科学家于1953年提出来的一种结构模型,其

主要实验依据是Chargaff研究小组对DNA的化学组成进行的分析研究,即DNA分子中四种碱基的摩尔百分比为A=T、G=C、A+G=T+C(Chargaff原则),以及由Wilkins研究小组完成的DNA晶体X线衍射图谱分析。天然DNA的二级结构以B型为主,其结构特征为:①为右手双螺旋,两条链以反平行方式排列;②主链位于螺旋外侧,碱基位于内侧;③两条链间存在碱基互补,通过氢键连系,且A-T、G-C(碱基互补原则);④螺旋的稳定因素为氢键和碱基堆砌力;⑤螺旋的螺距为3.4nm,直径为2nm。

五、DNA的超螺旋结构:

双螺旋的DNA分子进一步盘旋形成的超螺旋结构称为DNA的三级结构。绝大多数原核生物的DNA都是共价封闭的环状双螺旋,其三级结构呈麻花状。在真核生物中,双螺旋的DNA分子围绕一蛋白质八聚体进行盘绕,从而形成特殊的串珠状结构,称为核小体。核小体结构属于DNA的三级结构。

六、DNA的功能:

DNA的基本功能是作为遗传信息的载体,为生物遗传信息复制以及基因信息的转录提供模板。

DNA分子中具有特定生物学功能的片段称为基因(gene)。一个生物体的全部DNA序列称为基因组(genome)。基因组的大小与生物的复杂性有关。

七、RNA的空间结构与功能:

RNA分子的种类较多,分子大小变化较大,功能多样化。RNA通常以单链存在,但也可形成局部的双螺旋结构。

1.mRNA的结构与功能:mRNA是单链核酸,其在真核生物中的初级产物称为HnRNA。大多数真核成熟的mRNA分子具有典型的5’-端的7-甲基鸟苷三磷酸(m7GTP)帽子结构和3’-端的多聚腺苷酸(polyA)尾巴结构。mRNA的功能是为蛋白质的合成提供模板,分子中带有遗传密码。mRNA分子中每三个相邻的核苷酸组成一组,在蛋白质翻译合成时代表一个特定的氨基酸,这种核苷酸三联体称为遗传密码(coden)。

2.tRNA的结构与功能:tRNA是分子最小,但含有稀有碱基最多的RNA。tRNA的二级结构由于局部双螺旋的形成而表现为“三叶草”形,故称为“三叶草”结构,可分为五个部分:①氨基酸臂:由tRNA的5’-端和3’-端构成的局部双螺旋,3’-端都带有-CCA-OH顺序,可与氨基酸结合而携带氨基酸。②DHU臂:含有二氢尿嘧啶核苷,与氨基酰tRNA合成酶的结合有关。③反密码臂:其反密码环中部的三个核苷酸组成三联体,在蛋白质生物合成中,可以用来识别mRNA上相应的密码,故称为反密码(anticoden)。④TψC臂:含保守的TψC顺序,可以识别核蛋白体上的rRNA,促使tRNA与核蛋白体结合。⑤可变臂:位于TψC臂和反密码臂之间,功能不详。

3.rRNA的结构与功能:rRNA是细胞中含量最多的RNA,可与蛋白质一起构成核蛋白体,作为蛋白质生物合成的场所

。原核生物中的rRNA有三种:5S,16S,23S。真核生物中的rRNA有四种:5S,5.8S,18S,28S。

八、核酶:

具有自身催化作用的RNA称为核酶(ribozyme),核酶通常具有特殊的分子结构,如锤头结构。

九、核酸的一般理化性质:

核酸具有酸性;粘度大;能吸收紫外光,最大吸收峰为260nm。

十、DNA的变性:

在理化因素作用下,DNA双螺旋的两条互补链松散而分开成为单链,从而导致DNA的理化性质及生物学性质发生改变,这种现象称为DNA的变性。引起DNA变性的因素主要有:①高温,②强酸强碱,③有机溶剂等。DNA变性后的性质改变:①增色效应:指DNA变性后对260nm紫外光的光吸收度增加的现象;②旋光性下降;③粘度降低;④生物功能丧失或改变。加热DNA溶液,使其对260nm紫外光的吸收度突然增加,达到其最大值一半时的温度,就是DNA的变性温度(融解温度,Tm)。Tm的高低与DNA分子中G+C的含量有关,G+C的含量越高,则Tm越高。

十一、DNA的复性与分子杂交:

将变性DNA经退火处理,使其重新形成双螺旋结构的过程,称为DNA的复性。两条来源不同的单链核酸(DNA或RNA),只要它们有大致相同的互补碱基顺序,以退火处理即可复性,形成新的杂种双螺旋,这一现象称为核酸的分子杂交。核酸杂交可以是DNA-DNA,也可以是DNA-RNA杂交。不同来源的,具有大致相同互补碱基顺序的核酸片段称为同源顺序。常用的核酸分子杂交技术有:原位杂交、斑点杂交、Southern杂交及Northern杂交等。在核酸杂交分析过程中,常将已知顺序的核酸片段用放射性同位素或生物素进行标记,这种带有一定标记的已知顺序的核酸片段称为探针。

十二、核酸酶:

凡是能水解核酸的酶都称为核酸酶。凡能从多核苷酸链的末端开始水解核酸的酶称为核酸外切酶,凡能从多核苷酸

链中间开始水解核酸的酶称为核酸内切酶。能识别特定的核苷酸顺序,并从特定位点水解核酸的内切酶称为限制性核酸内切酶(限制酶)

第四章 酶

一、酶的概念:

酶(enzyme)是由活细胞产生的生物催化剂,这种催化剂具有极高的催化效率和高度的底物特异性,其化学本质是蛋白质。酶按照其分子结构可分为单体酶、寡聚酶和多酶体系(多酶复合体和多功能酶)三大类。

二、酶的分子组成:

酶分子可根据其化学组成的不同,可分为单纯酶和结合酶(全酶)两类。结合酶则是由酶蛋白和辅助因子两部分构成,酶蛋白部分主要与酶的底物特异性有关,辅助因子则与酶的催化活性有关。与酶蛋白疏松结合并与酶的催化活性有关的耐热低分子有机化合物称为辅酶。与酶蛋白牢固结合并与酶的催化活性有关的耐热低分子有机化合物称为辅基。

三、辅酶与辅基的来源及其生理功用:

辅酶与辅基的生理功用主要是:⑴ 运载氢原子或电子,参与氧化还原反应。⑵

运载反应基团,如酰基、氨基、烷基、羧基及一碳单位等,参与基团转移。大部分的辅酶与辅基衍生于维生素。

维生素(vitamin)是指一类维持细胞正常功能所必需的,但在许多生物体内不能自身合成而必须由食物供给的小分子有机化合物。维生素可按其溶解性的不同分为脂溶性维生素和水溶性维生素两大类。脂溶性维生素有VitA、VitD、VitE和VitK四种;水溶性维生素有VitB1,VitB2,VitPP,VitB6,VitB12,VitC,泛酸,生物素,叶酸等。

1.TPP:即焦磷酸硫胺素,由硫胺素(VitB1)焦磷酸化而生成,是脱羧酶的辅酶,在体内参与糖代谢过程中α-酮酸的氧化脱羧反应。

2.FMN和FAD:即黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD),是核黄素(VitB2)

篇三:生化小结(完整版)

生 化 小 结

绪论

一. 生物化学的定义:生物化学即生命的化学,主要应用化学的理论和方法 研究生命现象、从分子水平阐明生命现象的本质。

二. 生物化学发展史:①构成生物机体的物质基础(静态生化阶段)②研究生命物质在生物体内运动规律(动态生化阶段)③遗传信息传递、调控与生物大分子结构功能(分子生物学阶段)

第一章 蛋白质的结构与功能

一.蛋白质(Protein):由20种氨基酸(amino acids)通过肽键(peptide bond)

相连形成的高分子含氮化合物。

二.蛋白质的生物学重要性:

1. 蛋白质是生物体重要组成成分(分布广,含量高)。

2. 蛋白质具有重要的生物学功能(作为生物催化剂、代谢调节作用、免疫保护作用、物质的转运和存储、运动与支持作用、参与细胞间信息传递)。

3. 氧化供能

三.蛋白质组成元素:主要有C、H、O、N和 S。各种蛋白质的含氮量很接近,

平均为16%。

四.组成人体蛋白质的20种氨基酸均属于L-?-氨基酸。

五.氨基酸可根据侧链结构和理化性质进行分类(非极性脂肪族氨基酸、极性中

性氨基酸、芳香族氨基酸、酸性氨基酸、碱性氨基酸)。

六.20种氨基酸具有共同或特异的理化性质

1. 氨基酸具有两性解离的性质(氨基酸呈电中性时溶液的pH值称为该氨基酸的等电点)。

2. 含共轭双键的氨基酸具有紫外吸收性质(测定蛋白质溶液280nm的光吸收值)。

3. 氨基酸与茚三酮反应生成蓝紫色化合物。

七.蛋白质是由许多氨基酸残基组成的多肽链(肽键是由一个氨基酸的?-羧基

与另一个氨基酸的?-氨基脱水缩合而形成的化学键)。

八.蛋白质的分子结构:

1. 一级结构:蛋白质分子从N-端至C-端的氨基酸排列顺序,是蛋白质空间构象和特异生物学功能的基础,一级结构相似的蛋白质具有相似的高级结构与功能。(主要化学键:肽键,有些蛋白质还包括二硫键)。

2. 二级结构:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。(主要化学键:氢键)

肽单元:参与肽键的6个原子C?1、C、O、N、H、C?2位于同一平面,C?1和C?2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了所谓的肽单元 (peptide unit)。

?-螺旋 (?–helix,最常见,肽链主链绕假想的中心轴盘绕成螺旋状,右手螺旋结构,靠链内氢键维持的。每个氨基酸残基(第n个)的羰基

与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm)

?-折叠 (?-pleated sheet,是由伸展的多肽链组成的,使多肽链形成片层结构,构象通过一个肽键的羰基氧和位于同一个肽链或相邻肽链的另一个酰胺氢之间形成的氢键维持。肽链可以是平行排列或者)

?-转角 (?-turn)

无规卷曲 (random coil)

模体:具有特殊功能的超二级结构。二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,称为模体(motif)。(钙结合蛋白、锌指结构)

3. 三级结构:整条肽链中全部氨基酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置。(主要化学键:疏水键、离子键、氢键和 Van der Waals力等)

结构域:三级结构层次上的局部折叠区。分子量较大的蛋白质常可折叠成多个结构较为紧密的区域,并各行其功能,称为结构域。

分子伴侣:通过提供一个保护环境从而加速蛋白质折叠成天然构象或形成四级结构。(可逆地与未折叠肽段的疏水部分结合随后松开,如此重复进行可防止错误的聚集发生,使肽链正确折叠;与错误聚集的肽段结合,使之解聚后,再诱导其正确折叠;在蛋白质分子折叠过程中二硫键的正确形成起了重要的作用)

4. 亚基 (subunit):有些蛋白质分子含有二条或多条多肽链,每一条多肽链都有完整的三级结构。(主要化学键:氢键和离子键)

四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用。(同二聚体,异二聚体)

九.蛋白质的分类(单纯蛋白,结合蛋白;纤维状蛋白,球状蛋白)。

十.蛋白质组:一种细胞或一种生物所表达的全部蛋白质,即“一种基因组所表

达的全套蛋白质”。

十一. 蛋白质的功能依赖特定空间结构。

1. 协同效应:一个寡聚体蛋白质的一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体结合能力的现象。

2. 变构效应:蛋白质空间结构的改变伴随其功能的变化。

十二.蛋白质的理化性质:

1.蛋白质具有两性电离的性质。

2.蛋白质具有胶体性质。

3.蛋白质空间结构破坏而引起变性(破坏非共价键和二硫键,不改变蛋白质的一级结构)。

4.蛋白质的复性(若蛋白质变性程度较轻,去除变性因素后,蛋白质仍可恢复或部分恢复其原有的构象和功能)。

5.蛋白质沉淀(在一定条件下,蛋白疏水侧链暴露在外,肽链融会相互缠绕继而聚集,因而从溶液中析出。变性的蛋白质易于沉淀,有时蛋白质发生沉淀,但并不变性)。

6.蛋白质的凝固作用(蛋白质变性后的絮状物加热可变成比较坚固的凝块,此凝块不易再溶于强酸和强碱中)。

7.蛋白质在紫外光谱区有特征性吸收峰。

8.应用蛋白质呈色反应可测定蛋白质溶液含量(茚三酮反应、双缩脲反应)。

9.透析及超滤法可去除蛋白质溶液中的小分子化合物。

10.丙酮沉淀、盐析及免疫沉淀是常用的蛋白质沉淀方法。

11.利用荷电性质可用电泳法将蛋白质分离。

12.应用相分配或亲和原理可将蛋白质进行层析分离。

13.利用蛋白质颗粒沉降行为不同可进行超速离心分离。

14.应用化学或反向遗传学方法可分析多肽链的氨基酸序列。

15.应用物理学、生物信息学原理可进行蛋白质空间结构测定。

第二章 核酸的结构和功能

一.核酸(Nucleic acid):以核苷酸为基本组成单位的生物大分子,携带和传递

遗传信息。分脱氧核糖核酸、核糖核酸。

二.核苷酸是构成核酸的基本组成单位。核苷酸由碱基(base嘌呤碱、嘧啶碱)、

戊糖(ribose)与磷酸(phosphate)组成。

三.嘌呤N-9 或嘧啶N-1与(脱氧)核糖C-1’通过β-N-糖苷键相连形成(脱

氧)核苷,并与磷酸通过酯键结合构成 (脱氧)核苷酸。

四.DNA是脱氧核苷酸通过3’,5’-磷酸二酯键连接形成的大分子。

一个脱氧核苷酸3’的羟基与另一个核苷酸5’的α-磷酸基团缩合形成磷

酸二酯键(phosphodiester bond)。多个脱氧核苷酸通过磷酸二酯键构成了具有方向性的线性分子,称为多聚脱氧核苷酸即DNA链。DNA链的方向是5’→ 3’,交替的磷酸基团和戊糖构成了DNA的骨架。

五.RNA也是具有3’,5’-磷酸二酯键的线性大分子。

六.核酸的分子结构:

1.一级结构:核苷酸的排列顺序,或碱基序列。(5? pApCpTpGpCpT-OH 3? )

2.二级结构:双螺旋结构。

DNA是反向平行、右手螺旋的双链结构。两条多聚核苷酸链在空间的走向呈反向平行,两条链围绕着同一个螺旋轴形成右手螺旋的结构,双螺旋结构的直径为2.37nm,螺距为3.54nm;脱氧核糖和磷酸基团组成的亲水性骨架位于双螺旋结构的外侧,疏水的碱基位于内侧;双螺旋结构的表面形成了一个大沟和一个小沟。

DNA双链之间形成了互补碱基对。碱基配对关系称为互补碱基对;DNA的两条链则互为互补链;碱基对平面与螺旋轴垂直。

疏水作用力和氢键共同维系着DNA双螺旋结构的稳定。相邻两个碱基对会有重叠,产生了疏水性的碱基堆积力;碱基堆积力和互补碱基对的氢键共同维系着DNA结构的稳定。

3.高级结构:超螺旋结构(superhelix)。DNA双螺旋链再盘绕即形成超螺旋结构(正超螺旋与负超螺旋)。

原核生物DNA多为环状,以负超螺旋的形式存在,平均每200碱基就有一个超螺旋形成。

真核生物DNA以非常有序的形式存在于细胞核内,在细胞周期的大部分时间里,DNA以松散的染色质(chromatin)形式存在,在细胞分裂期,则形成高度致密的染色体(chromosome)。

4.染色质:DNA染色质呈现出的串珠样结构,染色质的基本单位是核小体(nucleosome)。核小体由DNA(约200bp)、组蛋白(H1、H2A、H2B、H3、H4)组成。

5.双链DNA的折叠和染色体组装:DNA经过多次折叠,被压缩了8000~10000倍,组装在直径只有为数微米的细胞核内。

第一次折叠,双链DNA构成核小体;第二次折叠,构成染色质纤维空管;第三次折叠,染色质纤维;第四次折叠,构成染色体。

七.DNA是遗传信息的物质基础。

DNA的基本功能是以基因的形式荷载遗传信息,并作为基因复制和转录的模

板;它是生命遗传的物质基础,也是个体生命活动的信息基础。基因从结构上定义,是指DNA分子中的特定区段,其中的核苷酸排列顺序决定了基因的功能。

八.mRNA是蛋白质合成中的模板。

1.不均一核RNA(hnRNA,mRNA的成熟过程是hnRNA的剪接过程)含有内含子

(intron)和外显子(exon);外显子是氨基酸的编码序列,而内含子是非编码序列;成熟的mRNA由氨基酸编码区和非编码区构成。

2.大部分真核细胞mRNA的5'末端都以7-甲基鸟嘌呤-三磷酸核苷(帽子结

构:m7GpppNm,可以与帽结合蛋白结合)为起始结构;在真核生物mRNA的3'末端有多聚腺苷酸结构(转录后加上)。功能:mRNA核内向胞质的转位、mRNA的稳定性维系、翻译起始的调控。

3.mRNA依照自身的碱基顺序指导蛋白质氨基酸顺序的合成:从mRNA分子5'

末端起的第一个AUG开始,每3个核苷酸为一组称为密码子(codon)或三联体密码(triplet code);AUG被称为起始密码子;决定肽链终止的密码子则称为终止密码子;位于起始密码子和终止密码子之间的核苷酸序列称为开放阅读框(open reading frame, ORF),决定了多肽链的氨基酸序列。

九.tRNA是蛋白质合成中的氨基酸载体。

1.转运RNA在蛋白质合成过程中作为各种氨基酸的载体, 将氨基酸转呈给

mRNA,由74~95核苷酸组成,占细胞总RNA的15%,具有很好的稳定性。

2.tRNA具有局部的茎环(stem-loop)结构或发卡(hairpin)结构。tRNA的二

级结构——三叶草形(氨基酸臂、DHU环、反密码环、TψC环、附加叉)。

3.tRNA的3’-末端连接氨基酸。tRNA的3’-末端都是以CCA结尾;3’-

末端的A与氨基酸共价连结,tRNA成为了氨基酸的载体;不同的tRNA可以结合不同的氨基酸。

4.tRNA的反密码子识别mRNA的密码子。tRNA的反密码子环上有一个由三个

核苷酸构成的反密码子(anticodon);tRNA上的反密码子依照碱基互补的原则识别mRNA上的密码子。

十.以rRNA为组分的核蛋白体是蛋白质合成的场所。

1.核蛋白体RNA是细胞内含量最多的RNA(>80%);rRNA与核蛋白体蛋白结合组成核蛋白体(ribosome),为蛋白质的合成提供场所。

2.原核生物,小亚基30s(rRNA16s)、大亚基50s(rRNA23s、5s);真核生物,小亚基40s(rRNA18s)、大亚基(rRNA28s、5.8s、5s)。

十一. snmRNA参与了基因表达的调控。

1. 细胞的不同部位存在的许多其他种类的小分子RNA,统称为非mRNA小RNA;RNA组学是研究细胞内snmRNA的种类、结构和功能;同一生物体内不同

种类的细胞、同一细胞在不同时空状态下snmRNAs表达谱的变化,以及与功能之间的关系。

2. 种类:核内小RNA、核仁小RNA、胞质小RNA、催化性小RNA、小片段干涉 RNA。

3. 功能:参与hnRNA的加工剪接。

十二. 核酶:某些小RNA分子具有催化特定RNA降解的活性,这种具有催化作用

的小RNA亦被称为核酶或催化性RNA。

十三. 小片段干扰RNA:siRNA是生物宿主对外源侵入的基因表达的双链RNA进

行切割所产生的特定长度和特定核酸序列的小片段RNA;可以与外源基因表达的mRNA相结合,并诱发这些mRNA的降解;基于此机理,人们发明了RNA干扰技术。

十四.核酸的理化性质:

1. 核酸为多元酸,具有较强的酸性。

2. 粘度:DNA>RNA,dada > sedan。

3. 沉降行为:不同构象的核酸分子的沉降的速率有很大差异,这是超速离心法提取和纯化核酸的理论基础。

4. 核酸分子具有强烈的紫外吸收。

5. DNA变性是双链解离为单链的过程(本质是双链间氢键的断裂)。

6. 增色效应(hyper chromic effect):DNA变性时其溶液OD260增高的现象。

7. 解链曲线:连续加热DNA的过程中以温度相对于A260值作图。

8. 解链温度(melting temperature,Tm):解链过程中,紫外吸光度的变化达到最大变化值的一半时所对应的温度。(G+C 含量越高,解链温度就越高)

9. DNA复性(repatriation):当变性条件缓慢地除去后,两条解离的互补链可重新配对,恢复原来的双螺旋结构。

10.退火(annealing):热变性的DNA经缓慢冷却后即可复性这一过程。

11.减色效应:DNA复性时,其溶液OD260降低。

12.核酸分子杂交:杂化双链(hierodule)可以在不同的DNA与DNA之间形成,也可以在DNA和RNA分子间或者RNA与RNA分子间形成。

十五.核酸酶:所有可以水解核酸的酶。

1. 分DNA酶、RNA酶;核酸内切酶(分为限制性核酸内切酶和非特异性限制性核酸内切酶)、核酸外切酶(5′→3′或3′→5′核酸外切酶)。

2. 功能:参与DNA的合成、修复以及RNA的剪接;清除多余的、结构和功能异常的核酸,以及侵入细胞的外源性核酸;降解食物中的核酸;体外重组DNA技术中的重要工具酶 。

第二章 酶

一.酶(Enzyme):生物体内活细胞产生的一种生物催化剂。

二.酶的形式:

1. 单体酶:仅具有三级结构的酶。

2. 寡聚酶:由多个相同或不同亚基以非共价键连接组成的酶。

3. 多酶体系:由几种不同功能的酶彼此聚合形成的多酶复合物。

篇四:分享生物化学笔记(完整版)

分享生物化学笔记(完整版)--有点多,大家下载了慢慢看

2

生物化学重点

第一章 绪论

一、生物化学的的概念:

生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:

1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:

1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

第二章 蛋白质的结构与功能

一、氨基酸:

1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:① 非极性中性氨基酸(8种);② 极性中性氨基酸(7种);③ 酸性氨基酸(Glu和Asp);④ 碱性氨基酸(Lys、Arg和His)。

二、 肽键与肽链:

肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端→C端。

三、肽键平面(肽单位):

肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个α碳原子处在同一个平面上,为刚性平面结构,称为肽键平面。

四、蛋白质的分子结构:

蛋白质的分子结构可人为分为一级、二级、三级和四级结构等层次。一级结构为线状结构,二、三、四级结构为空间结构。

1.一级结构:指多肽链中氨基酸的排列顺序,其维系键是肽键。蛋白质的一级结构决定其空间结构。

2.二级结构:指多肽链主链骨架盘绕折叠而形成的构象,借氢键维系。主要有以下几种类型:

⑴α-螺旋:其结构特征为:①主链骨架围绕中心轴盘绕形成右手螺旋;②螺旋每上升一圈是3.6个氨基酸残基,螺距为0.54nm;③ 相邻螺旋圈之间形成许多氢键;④ 侧链基团位于螺旋的外侧。

影响α-螺旋形成的因素主要是:① 存在侧链基团较大的氨基酸残基;② 连续存在带相同电荷的氨基酸残基;③ 存在脯氨酸残基。

⑵β-折叠:其结构特征为:① 若干条肽链或肽段平行或反平行排列成片;② 所有肽键的C=O和N—H形成链间氢键;③侧链基团分别交替位于片层的上、下方。

⑶β-转角:多肽链180°回折部分,通常由四个氨基酸残基构成,借1、4残基之间形成氢键维系。 ⑷无规卷曲:主链骨架无规律盘绕的部分。

3.三级结构:指多肽链所有原子的空间排布。其维系键主要是非共价键(次级键):氢键、疏水键、范德华力、离子键等,也可涉及二硫键。

4.四级结构:指亚基之间的立体排布、接触部位的布局等,其维系键为非共价键。亚基是指参与构成蛋白质四级结构的而又具有独立三级结构的多肽链。

五、 蛋白质的理化性质:

1.两性解离与等电点:蛋白质分子中仍然存在游离的氨基和游离的羧基,因此蛋白质与氨基酸一样具有两性解离的性质。蛋白质分子所带正、负电荷相等时溶液的pH值称为蛋白质的等电点。

2.蛋白质的胶体性质:蛋白质具有亲水溶胶的性质。蛋白质分子表面的水化膜和表面电荷是稳定蛋白质亲水溶胶的两个重要因素。

3.蛋白质的紫外吸收:蛋白质分子中的色氨酸、酪氨酸和苯丙氨酸残基对紫外光有吸收,以色氨酸吸收最强,最大吸收峰为280nm。

4.蛋白质的变性:蛋白质在某些理化因素的作用下,其特定的空间结构被破坏而导致其理化性质改变及生物活性丧失,这种现象称为蛋白质的变性。引起蛋白质变性的因素有:高温、高压、电离辐射、超声波、紫外线及有机溶剂、重金属盐、强酸强碱等。绝大多数蛋白质分子的变性是不可逆的。

六、蛋白质的分离与纯化:

1.盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。常用的中性盐有:硫酸铵、氯化钠、硫酸钠等。盐析时,溶液的pH在蛋白质的等电点处效果最好。凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。

2.电泳:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动。电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小。

3.透析:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。

4.层析:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离。主要有离子交换层析,凝胶层析,吸附层析及亲和层析等,其中凝胶层析可用于测定蛋白质的分子量。

5.超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离。超速离心也可用来测定蛋白质的分子量,蛋白质的分子量与其沉降系数S成正比。

七、氨基酸顺序分析:

蛋白质多肽链的氨基酸顺序分析,即蛋白质一级结构的测定,主要有以下几个步骤:

1. 分离纯化蛋白质,得到一定量的蛋白质纯品;

2. 取一定量的样品进行完全水解,再测定蛋白质的氨基酸组成;

3. 分析蛋白质的N-端和C-端氨基酸;

4. 采用特异性的酶(如胰凝乳蛋白酶)或化学试剂(如溴化氰)将蛋白质处理为若干条肽段;

5. 分离纯化单一肽段;

6. 测定各条肽段的氨基酸顺序。一般采用Edman降解法,用异硫氰酸苯酯进行反应,将氨基酸降解后,逐一进行测定;

7. 至少用两种不同的方法处理蛋白质,分别得到其肽段的氨基酸顺序;

8. 将两套不同肽段的氨基酸顺序进行比较,以获得完整的蛋白质分子的氨基酸顺序。

第三章 核酸的结构与功能

一、核酸的化学组成:

1.含氮碱:参与核酸和核苷酸构成的含氮碱主要分为嘌呤碱和嘧啶碱两大类。组成核苷酸的嘧啶碱主要有三种——尿嘧啶(U)、胞嘧啶(C)和胸腺嘧啶(T),它们都是嘧啶的衍生物。组成核苷酸的嘌呤碱主要有两种——腺嘌呤(A)和鸟嘌呤(G),它们都是嘌呤的衍生物。

2.戊糖:核苷酸中的戊糖主要有两种,即β-D-核糖与β-D-2-脱氧核糖,由此构成的核苷酸也分为核糖核苷酸与脱氧核糖核酸两大类。

3.核苷:核苷是由戊糖与含氮碱基经脱水缩合而生成的化合物。通常是由核糖或脱氧核糖的C1’ β-羟基与嘧啶碱N1或嘌呤碱N9进行缩合,故生成的化学键称为β,N糖苷键。其中由D-核糖生成者称为核糖核苷,而由脱氧核糖生成者则称为脱氧核糖核苷。由“稀有碱基”所生成的核苷称为“稀有核苷”。假尿苷(ψ)就是由D-核糖的C1’ 与尿嘧啶的C5相连而生成的核苷。

二、核苷酸的结构与命名:

核苷酸是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核苷酸和脱氧核糖核酸两大类。最常见的核苷酸为5’-核苷酸(5’ 常被省略)。5’-核苷酸又可按其在5’位缩合的磷酸基的多少,分为一磷酸核苷(核苷酸)、二磷酸核苷和三磷酸核苷。

此外,生物体内还存在一些特殊的环核苷酸,常见的为环一磷酸腺苷(cAMP)和环一磷酸鸟苷(cGMP),它们通常是作为激素作用的第二信使。

核苷酸通常使用缩写符号进行命名。第一位符号用小写字母d代表脱氧,第二位用大写字母代表碱基,第三位用大写字母代表磷酸基的数目,第四位用大写字母P代表磷酸。

三、核酸的一级结构:

核苷酸通过3’,5’-磷酸二酯键连接起来形成的不含侧链的多核苷酸长链化合物就称为核酸。核酸具有方向性,5’-位上具有自由磷酸基的末端称为5’-端,3’-位上具有自由羟基的末端称为3’-端。

DNA由dAMP、dGMP、dCMP和dTMP四种脱氧核糖核苷酸所组成。DNA的一级结构就是指DNA分子中脱氧核糖核苷酸的种类、数目、排列顺序及连接方式。RNA由AMP,GMP,CMP,UMP四种核糖核苷酸组成。RNA的一级结构就是指RNA分子中核糖核苷酸的种类、数目、排列顺序及连接方式。

四、DNA的二级结构:

DNA双螺旋结构是DNA二级结构的一种重要形式,它是Watson和Crick两位科学家于1953年提出来的一种结构模型,其主要实验依据是Chargaff研究小组对DNA的化学组成进行的分析研究,即DNA分子中四种碱基的摩尔百分比为A=T、G=C、A+G=T+C(Chargaff原则),以及由Wilkins研究小组完成的DNA晶体X线衍射图谱分析。

天然DNA的二级结构以B型为主,其结构特征为:①为右手双螺旋,两条链以反平行方式排列;②主链位于螺旋外侧,碱基位于内侧;③两条链间存在碱基互补,通过氢键连系,且A-T、G-C(碱基互补原则); ④螺旋的稳定因素为氢键和碱基堆砌力;⑤螺旋的螺距为3.4nm,直径为2nm。

五、DNA的超螺旋结构:

双螺旋的DNA分子进一步盘旋形成的超螺旋结构称为DNA的三级结构。

绝大多数原核生物的DNA都是共价封闭的环状双螺旋,其三级结构呈麻花状。

在真核生物中,双螺旋的DNA分子围绕一蛋白质八聚体进行盘绕,从而形成特殊的串珠状结构,称为核小体。核小体结构属于DNA的三级结构。

六、DNA的功能:

DNA的基本功能是作为遗传信息的载体,为生物遗传信息复制以及基因信息的转录提供模板。

DNA分子中具有特定生物学功能的片段称为基因(gene)。一个生物体的全部DNA序列称为基因组(genome)。基因组的大小与生物的复杂性有关。

七、RNA的空间结构与功能:

RNA分子的种类较多,分子大小变化较大,功能多样化。RNA通常以单链存在,但也可形成局部的双螺旋结构。

1.mRNA的结构与功能:mRNA是单链核酸,其在真核生物中的初级产物称为HnRNA。大多数真核成熟的mRNA分子具有典型的5’-端的7-甲基鸟苷三磷酸(m7GTP)帽子结构和3’-端的多聚腺苷酸(polyA)尾巴结构。mRNA的功能是为蛋白质的合成提供模板,分子中带有遗传密码。mRNA分子中每三个相邻的核苷酸组成一组,在蛋白质翻译合成时代表一个特定的氨基酸,这种核苷酸三联体称为遗传密码(coden)。

2.tRNA的结构与功能:tRNA是分子最小,但含有稀有碱基最多的RNA。tRNA的二级结构由于局部双螺旋的形成而表现为“三叶草”形,故称为“三叶草”结构,可分为五个部分:①氨基酸臂:由tRNA的5’-端和3’-端构成的局部双螺旋,3’-端都带有-CCA-OH顺序,可与氨基酸结合而携带氨基酸。②DHU臂:含有二氢尿嘧啶核苷,与氨基酰tRNA合成酶的结合有关。③反密码臂:其反密码环中部的三个核苷酸组成三联体,在蛋白质生物合成中,可以用来识别mRNA上相应的密码,故称为反密码(anticoden)。④ TψC臂:含保守的TψC顺序,可以识别核蛋白体上的rRNA,促使tRNA与核蛋白体结合。⑤可变臂:位于TψC臂和反密码臂之间,功能不详。

3.rRNA的结构与功能:rRNA是细胞中含量最多的RNA,可与蛋白质一起构成核蛋白体,作为蛋白质生物合成的场所。原核生物中的rRNA有三种:5S,16S,23S。真核生物中的rRNA有四种:5S,5.8S,18S,28S。

八、核酶:

具有自身催化作用的RNA称为核酶(ribozyme),核酶通常具有特殊的分子结构,如锤头结构。

九、核酸的一般理化性质:

核酸具有酸性;粘度大;能吸收紫外光,最大吸收峰为260nm。

十、DNA的变性:

在理化因素作用下,DNA双螺旋的两条互补链松散而分开成为单链,从而导致DNA的理化性质及生物学性质发生改变,这种现象称为DNA的变性。

引起DNA变性的因素主要有:源不温,②强酸强碱,③有机溶剂等。DNA变性后的性质改变:①增色

效应:指DNA变性后对260nm紫外光的光吸收度增加的现象;②旋光性下降;③粘度降低;④生物功能丧失或改变。

加热DNA溶液,使其对260nm紫外光的吸收度突然增加,达到其最大值一半时的温度,就是DNA的变性温度(融解温度,Tm)。Tm的高低与DNA分子中G+C的含量有关,G+C的含量越高,则Tm越高。

十一、DNA的复性与分子杂交:

将变性DNA经退火处理,使其重新形成双螺旋结构的过程,称为DNA的复性。

两条来源不同的单链核酸(DNA或RNA),只要它们有大致相同的互补碱基顺序,以退火处理即可复性,形成新的杂种双螺旋,这一现象称为核酸的分子杂交。核酸杂交可以是DNA-DNA,也可以是DNA-RNA杂交。不同来源的,具有大致相同互补碱基顺序的核酸片段称为同源顺序。

常用的核酸分子杂交技术有:原位杂交、斑点杂交、Southern杂交及Northern杂交等。

在核酸杂交分析过程中,常将已知顺序的核酸片段用放射性同位素或生物素进行标记,这种带有一定标记的已知顺序的核酸片段称为探针。

十二、核酸酶:

凡是能水解核酸的酶都称为核酸酶。凡能从多核苷酸链的末端开始水解核酸的酶称为核酸外切酶,凡能从多核苷酸链中间开始水解核酸的酶称为核酸内切酶。能识别特定的核苷酸顺序,并从特定位点水解核酸的内切酶称为限制性核酸内切酶(限制酶)

第四章 酶

一、酶的概念:

酶(enzyme)是由活细胞产生的生物催化剂,这种催化剂具有极高的催化效率和高度的底物特异性,其化学本质是蛋白质。酶按照其分子结构可分为单体酶、寡聚酶和多酶体系(多酶复合体和多功能酶)三大类。

二、酶的分子组成:

酶分子可根据其化学组成的不同,可分为单纯酶和结合酶(全酶)两类。结合酶则是由酶蛋白和辅助因子两部分构成,酶蛋白部分主要与酶的底物特异性有关,辅助因子则与酶的催化活性有关。

与酶蛋白疏松结合并与酶的催化活性有关的耐热低分子有机化合物称为辅酶。与酶蛋白牢固结合并与酶的催化活性有关的耐热低分子有机化合物称为辅基。

三、辅酶与辅基的来源及其生理功用:

辅酶与辅基的生理功用主要是:⑴ 运载氢原子或电子,参与氧化还原反应。⑵ 运载反应基团,如酰基、氨基、烷基、羧基及一碳单位等,参与基团转移。大部分的辅酶与辅基衍生于维生素。

维生素(vitamin)是指一类维持细胞正常功能所必需的,但在许多生物体内不能自身合成而必须由食物供给的小分子有机化合物。

维生素可按其溶解性的不同分为脂溶性维生素和水溶性维生素两大类。脂溶性维生素有VitA、VitD、VitE和VitK四种;水溶性维生素有VitB1,VitB2,VitPP,VitB6,VitB12,VitC,泛酸,生物素,叶酸等。

1.TPP:即焦磷酸硫胺素,由硫胺素(Vit B1)焦磷酸化而生成,是脱羧酶的辅酶,在体内参与糖代谢过程中α-酮酸的氧化脱羧反应。

2.FMN和FAD:即黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD),是核黄素(VitB2)的衍生物。FMN或FAD通常作为脱氢酶的辅基,在酶促反应中作为递氢体(双递氢体)。

篇五:生物化学复习资料(人卫7版)_2

生化复习资料

第一章

一、 蛋白质的生理功能

蛋白质是生物体的基本组成成分之一,约占人体固体成分的45%左右。蛋白质在生物体内分布广泛,几乎存在于所有的组织器官中。蛋白质是一切生命活动的物质基础,是各种生命功能的直接执行者,在物质运输与代谢、机体防御、肌肉收缩、信号传递、个体发育、组织生长与修复等方面发挥着不可替代的作用。

二、 蛋白质的分子组成特点

蛋白质的基本组成单位是氨基酸

? 编码氨基酸:自然界存在的氨基酸有300余种,构成人体蛋白质的氨基酸只有20种,且具有自己的遗传密码。各种蛋白质的含氮量很接近,平均为16%。

? 每100mg样品中蛋白质含量(mg%):每克样品含氮质量(mg)×6.25×100。 氨基酸的分类

? 所有的氨基酸均为L型氨基酸(甘氨酸)除外。

? 根据侧链基团的结构和理化性质,20种氨基酸分为四类。

1. 非极性疏水性氨基酸:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、亮氨酸(Leu)、异亮氨酸(Ile)、苯丙氨酸(Phe)、脯氨酸(Pro)。

2. 极性中性氨基酸:色氨酸(Trp)、丝氨酸(Ser)、酪氨酸(Tyr)、半胱氨酸(Cys)、蛋氨酸(Met)、天冬酰胺(Asn)、谷胺酰胺(gln)、苏氨酸(Thr)。

3. 酸性氨基酸:天冬氨酸(Asp)、谷氨酸(Glu)。

4. 碱性氨基酸:赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His)。

? 含有硫原子的氨基酸:蛋氨酸(又称为甲硫氨酸)、半胱氨酸(含有由硫原子构成的巯基-SH)、胱氨酸(由两个半胱氨酸通过二硫键连接而成)。

? 芳香族氨基酸:色氨酸、酪氨酸、苯丙氨酸。

? 唯一的亚氨基酸:脯氨酸,其存在影响α-螺旋的形成。

? 营养必需氨基酸:八种,即异亮氨酸、甲硫氨酸、缬氨酸、亮氨酸、色氨酸、苯丙氨酸、苏氨酸、赖氨酸。可用一句话概括为?一家写两三本书来?,与之谐音。

氨基酸的理化性质

? 氨基酸的两性解离性质:所有的氨基酸都含有能与质子结合成NH4+的氨基;含有能与

-羟基结合成为COO的羧基,因此,在水溶液中,它具有两性解离的特性。在某一pH环境溶

液中,氨基酸解离生成的阳郭子及阴离子的趋势相同,成为兼性离子。此时环境的pH值称为该氨基酸的等电点(pI),氨基酸带有的净电荷为零,在电场中不泳动。pI值的计算如下:pI=1/2(pK1 + pK2),(pK1和pK2分别为α-羧基和α-氨基的解离常数的负对数值)。 ? 氨基酸的紫外吸收性质

? 吸收波长:280nm

? 结构特点:分子中含有共轭双键

? 光谱吸收能力:色氨酸>酪氨酸>苯丙氨酸

? 呈色反应:氨基酸与茚三酮水合物共加热,生成的蓝紫色化合物在570nm波长处有最大吸收峰;蓝紫色化合物=(氨基酸加热分解的氨)+(茚三酮的还原产物)+(一分子茚三酮)。

肽的相关概念

? 寡 肽:小于10分子氨基酸组成的肽链。

? 多 肽:大于10分子氨基酸组成的肽链。

? 氨基酸残基:肽链中因脱水缩合而基团不全的氨基酸分子。

肽 键:连接两个氨基酸分子的酰胺键。

肽单元:参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,组成肽单元。

三、 蛋白质分子结构特点 ? ?

见表1-1。

? 个特殊的空间构象并发挥特定的作用。

? 锌指结构:是一个典型的模体,由一个α-螺旋和二个反平衡的β-折叠的3个肽段组成,具有结合锌离子的功能。

? 分子伴侣:能够可逆地与未折叠肽段的疏水部分结合随后松开,引导肽链正确折叠的存在于细胞内的一类蛋白质,也对蛋白质二硫键正确形成起到重要作用。

四、 蛋白质一级结构与空间结构的关系

一级结构是空间构象的基础,具有相似一级结构的多肽或蛋白质,其空间构象及功能也相似。

? 分子病:由于蛋白质分子一级结构发生改变,导致其功能改变而产生的疾病。

五、 蛋白质空间结构与功能的关系 ?

蛋白质空间结构由一级结构决定,其空间结构与功能密切相关。

? 血红蛋白(Hb)由四个亚基组成,两个α亚基,两个β亚基。记忆要点如下: ? 血红蛋白分子存着紧张态(T)和松弛态(R)两种不同的空间构象。

? T型和氧分子亲和力低,R型与氧分子的亲和力强,四个亚基与氧分子结合的能力不一样。

? 第一个亚基与氧分子结合后,使Hb分子空间构象发生变化,引起后一个亚基与氧分子结合能力加强(正协同效应)。

? 肌红蛋白分子只有一个亚基,不存在变构效应

? 协同效应:指一个亚基与其配体结合后,能影响此寡聚体中的另一个亚基与配体的结合能力。促进作用则为正协同效应;反之为负协同效应。

? 变构效应:蛋白质分子的亚基与配体结合后,引起蛋白质的构象发生变化的现象。 ? 结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。疯牛病:是由朊病毒蛋白引起的一组人和动物神?

经退行性病变,具有传染性、遗传性或散在发病的特点。生物体内含有正常的α-螺旋形式的PrPc,转变为异常的β-折叠形式的PrPSc具有致病性。

六、 蛋白质重要的理化性质及相关概念

蛋白质的等电点:当蛋白质在某一pH溶液中时,蛋白质解离成正、负离子的趋势相等,成为兼性离子,带有的净电荷为零,此时溶液的pH值称为蛋白质的等电点。

? 体内的蛋白质等电点各不相同,大多数接近于pH5.0

? 碱性蛋白质:鱼精蛋白、组蛋白 酸性蛋白质:胃蛋白酶、丝蛋白

? 蛋白质处于大于其等电点的pH值溶液中时,蛋白质颗粒带负电荷。反之则带有正电荷。

? 蛋白质胶体溶液稳定的两个因素:水化膜、表面电荷。

? 蛋白质的变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,导致理化性质的改变和生物活性的丧失。

? 变性的本质:二硫键与非共价键的破坏,不涉及肽键的断裂

? 变性后特点:生物学活性丧失、溶解度下降、粘度增加、结晶能力消失、易被蛋白酶水解

? 变性的因素:加热、乙醇、强酸、强碱、重金属离子及生物碱试剂等

? 蛋白质复性:变性程度较轻,去除变性因素后,仍可恢复或部分恢复其原有的构象和功能

? 蛋白质的凝固作用:蛋白质经强酸或强碱变性后,仍能溶解于该溶液中。若调节pH值至其等电点时,变性蛋白质呈絮状析出,再加热,形成坚固的凝块。蛋白质的复性:若蛋白质变性程度较轻,去除变性因素后,蛋白质仍可恢复或部分恢复其原有的构象和功能,称为复性。

? 蛋白质的紫外吸收:含有具有共轭双键的三种芳香族氨基酸,于280nm波长处有特征吸收峰。

? 蛋白质的呈色反应:

? 茚三酮反应:蛋白质水解后可产生游离的氨基酸,原理同前

? 双缩脲反应:肽键与碱性硫酸铜共热,呈现紫色或红色。氨基酸不出现此反应,当蛋白质不断水解时,氨基酸浓度上升,其双缩脲呈色浓度逐渐下降,因此可以检测蛋白质的水解程度。

七、 蛋白质的分离纯化 ?

透 析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。

超滤法:应用正压或离心力使蛋白质溶液透过有一定截留分子量的超滤膜的方法。 ? 丙酮沉淀:0-4℃低温;丙酮的体积10倍于被沉淀蛋白质;蛋白质沉淀后应迅速分离。 ? 盐 析:硫酸铵、硫酸钠或氯化钠等中性盐放入蛋白质溶液中,破坏水化膜并中和表面电荷,导致蛋白质胶体的稳定因素去除而沉淀。

? 免疫沉淀法:利用特异抗体识别相应的抗原蛋白,形成抗原抗体复合物,从蛋白质混合溶液中分离获得抗原蛋白的方法。

? 电 泳:蛋白质在高于或低于其等电点的溶液中,受到电场力的作用向正极或负极泳动。

? SDS-PAGE电泳:加入负电荷较多的SDS(十二烷基磺酸钠),导致蛋白质分子间的电荷差异消失,此时蛋白质在电场中的泳动速率只和蛋白质颗粒大小有关,用于蛋白质分子量的测定。

? 等电聚焦电泳:在电场中形成一个连续而稳定的线性pH梯度,电泳时被分离的蛋白质泳动至其等电点相等的pH值区域时,净电荷为零不再受电场力移动,该法用于根据蛋白质等电点的差异进行分离。 ? ?

层 析:待分离蛋白质溶液(流动相)经过一个固态物质(固定相)时,根据溶液中待分离的蛋白质颗粒大小、电荷多少及亲和力等,使待分离的蛋白质在两相中反复分配,并以不同速度流经固定相而达到分离蛋白质的目的。

? 阴离子交换层析:负电量小的蛋白质首先被洗脱

? 凝胶过滤:分子量大的蛋白质最先洗脱

? 超速离心:既可分离纯化蛋白质也可测定蛋白质的分子量;

? 对于球形蛋白质而言,沉降系数S大体上和分子量成正比关系

? S(未知)/S(标准)={Mr(未知)/Mr(标准)}2/3

八、 多肽链氨基酸序列分析方法及关键试剂名称 ?

氨基酸序列分析

? 步骤一:分析已纯化蛋白质的氨基酸组成

? 步骤二:测定多肽链的氨基末端与羧基末端为何种氨基酸。以前用二硝基氟苯,现多用丹酰氯

? 步骤三:将肽链水解成片段(表1-2)。

? ? 步骤五:统计学分析,组合排列对比,得到完整肽链氨基酸排列顺序

通过核酸来推演蛋白质中的氨基酸序列的步骤:

? 步骤一:分离编码蛋白质的基因

? 步骤二:测定DNA序列

? 步骤三:排列出mRNA序列

? 步骤四:按照三联密码的原则推演出氨基酸的序列

蛋白质空间结构测定

蛋白质二级结构含量测定:圆二色光谱法,测α-螺旋较多的蛋白质时,结果较为准确。 蛋白质三维空间结构测定:X射线衍射法和磁共振技术。

第二章

一、 核酸的分类、细胞分布、核酸元素组成特点及碱基、核苷、核苷酸的化学结构

核酸是生物遗传的物质基础,是一切生物体所含有的最重要的生物大分子之一。

天然存在的核酸根据其分子的物质组成不同分为两大类:DNA与RNA。

? 核酸的元素组成:主要由碳、氢、氧、氮、磷组成,磷的含量较为稳定,占核酸

总量的9-10%。

? 基本组成:核酸的基本组成是核苷酸。

? 苷酸

方式 核间的连接二、

3’,5’-磷酸二酯键;5’末端是指在DNA或RNA链中末端为5’-磷酸基,未形成磷酸

二酯键的一端;3’末端是指在DNA或RNA链中末端为3’-OH,未被酯化的一端;

各种简化式书写时都是5’→3’,其读向都是从左到右,所表示的碱基序列也都是从5’端到3’端。

三、 两类核酸(DNA与RNA)性质的异同

详见表2-1。

四、 DNA的一级结构、二级结构要点及碱基配对规律,了解DNA的高级结构形式

详见表2-2。

表2-2 DNA分子结构的比较

五、 mRNA、tRNA二级结构特点及rRNA的类型和其它小分子RNA

mRNA、tRNA、rRNA结构特点见表2-3。

其它小分子RNA种类及功能见表2-4。

体裁作文