若函数f(x),g(x)都是定义在R上奇函数,F(x)=af(x)+bg(x)+2在区间(0,+∞),最大值5,求f(x)在区间(-∞,0)上的最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 22:13:24
x){ѽigS7iTh{Xtݬ';;YdGӥE:n@ I F@%O{vE@GQtC?PMR>x5S`u?d.`';z.[b>4< Cցu:p.PI[ӮFOM:N 1p @
若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=
已知定义在R上的函数f(x)和g(x)满足g(x) 0,f'(x)g(x)
已知f(x),g(x)都是定义在R上的函数 g(x)≠0 f'(x)g(x)<f(x)g'(x),f(x)=a^x g(x),怎样由 f'(x)g(x)<f(x)g'(x)得出发f(x)/g(x)为减函数
若函数f(x),g(x)都是定义在R上奇函数,F(x)=af(x)+bg(x)+2在区间(0,+∞),最大值5,求f(x)在区间(-∞,0)上的最小值
证明:若f(x),g(x)都是定义在R上的偶函数,则f(x)+g(x),f(x)g(x)也是定义在R上的偶函数
若f(x)和g(x)都是定义在实数集R上的函数,且方程x-f(g(x))=0有实数解,则g(f(x))不可能是 解析:由x-f[g(x)=0,可得f[g(x)]=x 又g[f(g(x))]=g(x),可得g[f(x)]=x 我就是想知道可得g[f(x)]=x是怎么得来的.辛苦了!挺急
f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f'(x)=g'(x),则f(x)与g(x)满足A.f(x)=g(x)B.f(x)-g(x)为常数函数C.f(x)=g(x)=0D.f(x)+g(x)为常数函数
f(x)与g(x)是定义在R上的两个多项式函数若f(x),g(x)满足条件f'(x)=g'(x),则f(x)与g(x)满足A f(x)=g(x) B f(x)-g(x)为常数函数C f(x)=g(x)=0 D f(x)+g(x)为常数函数
已知函数f(x),g(x)都是定义在R上的奇函数,F(x)=f(x)+g(x),且F(x)在区间(0,+∞)上是减函数若x≥0时,F(x)=-x(x+1),求函数F(x)的解析式
小弟感激不尽!已知f(X),g(X)都是定义在R上的函数,若存在实数m,n使得h(X)=mf(x)+ng(x),则称h(x)为f(x),g(X)在R上生成函数,若f(X)=2cos2x-1,g(x)=sinx问y=cosx是否为f(X),g(X)在R上生成的函数,说明理由.(注:cos2x中
若f(x),g(x)是定义在R上的函数,f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=1/(X²-2X+1),求f(x),g(x)的表达式
f(x),g(x)分别是定义在R上的奇,偶函数x0,g(-3)=0,不等式f(x)g(x)0.∴ G(x)在(-∞,0)上是增函数且 G(-3)=0.又∵f(x)为奇函数,g(x)为偶函数,∴ (x)=f(x)g(x)为奇函数.∴ G(x)在(0,+∞)上也是增函数且 G(3)=0.当x
定义在R上的函数F(x),g(x)f(x)/g(x)=a^x且f(x)的导数g(x)
已知定义在R上的函数f(x),g(x)满足f(x)/g(x)=a^x,且f'(x)g(x)
f(x)与g(X)是定义在R上的两个可导函数,若f(X).g(X)满足f'(X)=g'(X),则f'(X)与g'(X)满足什么条件
导函数(数学)定义在R上的函数f(x),若(x-1)f'(x)
f(x)与g(x)是定义在R上的两个可导出函数,若f(x),g(x)满足f'(x)=g'(x),则f(x)与g(x)满足A.f(x)=g(x)B.f(x)-g(x)为常数C.f(x)=g(x)=0Df(x)+g(x)为常数
若f(x),g(x)是定义在R上的函数,f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=1/(x平方-x+1)求f(x)的表达式