设正实数x,y,z满足x^2-3xy+4y^2-z=0,则xy/z取得最大值时,2/x+1/y+2/z的最大值为——答案是1.求详细解答过程,谢谢!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 05:53:21
x͑J@_%$]Ty>)?"Xm+"KH"M|g`z(fwvvf
/d4gySY\&|:ulW)3wX٥q"
!S#j:)?,j^SvNE,9ˇpۥ}X!Bf&KxW
)!U@pDG6G|ɋ+8P]OT%<<2CgG!H@eBOTc(Pip0Y8@jac=M8bm]F\ޥVFVqQcSj
设正实数x,y,z满足x*x-3xy+4y*y-z=0,则当xy/z取得最大值时,2/x+1/y-2/z的最大值为?
设正实数x,y,z满足x^2-3xy+4y^2-z=0,则z/xy取得最大值时,x+2y+-z的最大值为 (A)0 (B) 9/8 (C)2 (D) 9/4
设正实数x,y,z满足x^2-3xy+4y^2-z=0,则xy/z取得最大值时,2/x+1/y+2/z的最大值为
设正实数x,y,z满足x^2-3xy+4y^2-z=0,则当xy/z取得最大值时,2/x+1/y-2/z的最大值为?
设正实数x,y,z满足x²-3xy+4y²-z=0,则当(z÷xy)取得最小值时,x+2y-z的最大值为?
:设X,Y,Z是正实数,满足XY+Z=(X+Z)(Y+Z),则XYZ的最大值是
设正实数xyz满足x^2-3xy+4y^2-z=0则当z/xy取最小值时,x+2y-z的最大值为多少?
设正实数x,y,z满足x^2+y^2+z^2=1,求证x^2yz+y^2xz+z^2xy
设正实数xyz满足x2-3xy+4y2-z=0,则当(xy)/z取得最大值时,2/x+1/y-2/z的最大值为
正实数x,y,z,满足x²-3xy+4y²-z=0,则当xy/z取得最大值时,2/x+1/y-2/z的最大值为多少?应该是用均值不等式的方法算 ,
设正实数x,y,z满足x^2-3xy+4y^2-z=0,则xy/z取得最大值时,2/x+1/y+2/z的最大值为——答案是1.求详细解答过程,谢谢!
设x,y,z是正实数,则(xy+2yz)/(x平方+y平方+z平方)的最大值为
设正实数x,y满足xy=(x-4y)/(x+y),求y的取值范围
设正实数x,y,z满足x+2y+z=1,则1/(x+y)+9(x+y)/(y+z)的最小值
设实数xyz满足x+y+2z=4 xy+3yz+3zx=7 求z的最大值
正实数x,y,z,满足xy+yz=10,则x^2+5y^2+4z^2的最小值为
设正实数x,y满足x^3+y^3=x-y,求证:x^2+4y^2
设正实数xyz满足x+2y+z=3则y+z+(x+y)^2设正实数xyz满足x+2y+z=3 则[y+z+(x+y)^2]/[(x+y)*(y+z)]的最小值是