g(x)在[a,b]连续 f(x)在(a,b)二阶可导 且满足f''(x)+g(x)f'(x)-f(x)=0 x∈[a,b] f(a)=f(b)=0 证明:f(x)=0反证法证明:若f(x)在[a,b]上不恒为0则f(x)在[a,b]上取得正的最大值或负的最小值不妨设f(x0)=maxf(x)>0,x∈[a,b]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 18:22:08
xTnPMcqۘ-r‡ ˆU,҇ۤvJ&6iӸD+Zm^ L!ݰ{̙je&{*/GsI8h$1=E9,Qրk\mhp4e<b@Eݸ+M`Gt='?Mf:>gjkdhm\œRuuJ2ZT*o >}Z4 2D3D:f-P&@,dO 9Cu=UW+` _XeDf5 j{YgUwJC$Eě0;fN}7=t,jydw [v+L`8L3™]RcD*4έM[^ 4G56ϭ,mkdҥE5x AA Y)TK'HMe۞E¡LCj9q]Grp{8l 1JmYH1