f(x1)+f(x2)=2f((x1+x1)/2)f((x1-x2)/2)恒成立,求证f(x)是偶函数f(x)恒不为0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 22:17:41
x)KӨ0FFitTjWөo VA'=|uγM/7i>i㶧{M 7NzɎ]6IE5f"%v6ƓK*Ԕ-m!Ck2_SVHa]A d@袛fb$Xϳ
hlX
h# +yԱ#@a S<
已知f(x)对任意实数x1 x2都有f(x1+x2)+f(x1-x2)=2f(x1)·f(x2) 求证f(x)为偶函数请各位看以下解法是否正确:由题意f(x2+x1)+f(x2-x1)=2f(x2)·f(x1)所以f(x1+x2)+f(x1-x2)=f(x2+x1)+f(x2-x1)所以f(x1-x2)=f(x2-x1)若x1-x2=x 则x2-
对于函数f(x)的定义域中任意的x1,x2(x1≠x2),有如下结论1)f(x1+x2)=f(x1)*f(x2) (2)f(x1*x2)=f(x1)+f(x2) (3)[f(x1)-f(x2)]/(x1-x2)>0 (4) f[(x1+x2)/2]>[f(x1)+f(x2)]/2
对于函数f(x)的定义域中任意的x1,x2(x1≠x2),有如下结论(1)f(x1+x2)=f(x1)*f(x2) (2)f(x1*x2)=f(x1)+f(x(1)f(x1+x2)=f(x1)*f(x2) (2)f(x1*x2)=f(x1)+f(x2) (3)[f(x1)-f(x2)]/(x1-x2)>0 (4) f[(x1+x2)/2]
证明f(x1+x2)+f(x1-x2)=2f(x1)f(x2)为偶函数
f(x1+x2)=f(x1)f(x2),f’(0)=2,求f(x)和f’(x)
证明:则f(x)=(x1+x2/2)=f(x1)+f(x2)/2
f(x1x2)=f(x1)f(x2)且f(x1+x2)/2>[f(x1)+f(x2)]/2,则f(x)的一个解式是
已知函数f(x)=2^x,x1,x2是任意实数(x1不等于x2),证明:1/2[f(x1)+f(x2)]>f[(x1+x2)/2]
已知函数f(x)=2^x,x1,x2是任意实数,且x1≠x2,证明:1/2[f(x1)+f(x2)] 〉f[(x1+x2)/2]
对于函数f(x)定义域中任意的x1、x2(x1≠x2),有如下结论:(1)f(x1+x2)=f(x1)+f(x2);(2)f(x1·x2)=f(x1)+f(x2); (3)[f(x1)-f(x2)]/(x1-x2)>0; (4)f[(x1+x2)/2]
对于函数f(x)的定义域中任意的x1,x2(x1≠x2),有如下结论(1)f(x1+x2)=f(x1)*f(x2) (2)f(x1*x2)=f(x1)+f(x2) (3)[f(x1)-f(x2)]/(x1-x2)>0 (4) f[(x1+x2)/2]
对于函数f(x)=lgx定义域中任意X1,X2(X1≠X2)有如下结论:①f(x1+x2)=f(x1)+f(x2);②f(x1·x2)=f(x1)+f(x2);③f(x1)-f(x2)/x1-x2>0;④f(x1+x2/2)
若函数f(x)=-x2+2x,则对任意实数x1,x2x,下列不等式总成立的是A,f((x1+x2)/2)≤f(x1)+fx(x2)/2 C,f((x1+x2)/2)≥f(x1)+fx(x2)/2B,f((x1+x2)/2)<f(x1)+fx(x2)/2 D,f((x1+x2)/2)>f(x1)+fx(x2)/2
证明f(x)=2^x,f((x1+x2)/2)
已知函数f(x)=lnX,若x1>x2>0,求证:(f(x1)-f(x2))/(x1-x2)>2x2/(x1^2+x2^2)
已知二次函数f(x)=ax^2+bx+c若任意x1,x2,且x1这个是标准答案令g(x)=f(x)-[f(x1)+f(x2)]/2g(x1)=[f(x1)-f(x2)]/2g(x2)=[f(x2)-f(x1)]/2g(x1)g(x2)=-[f(x1)-f(x2)]^2/4
偶函数f(x)对任意x1,x2,恒有f(x1+x2)=f(x1)+f(x2)+2x1*x2+1……偶函数f(x)对任意x1,x2,恒有f(x1+x2)=f(x1)+f(x2)+2x1*x2+1 求f(x)的解析式
若f(X)=a^x,请证明f(x1+x2/2)小于等于[f(x1)+f(x2)]/2