设f(x)=向量a·b,其中向量a=(2,cos2x),b=(1,-2) 求f(x)单调区间 当x属于[0,π/3]时,求f(x)的值域.要正确率

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 07:20:41
x){n_F _'ڞuۓkF:F:I:F 66
设函数f(x)=向量a·向量b 其中向量a=(m,√2) 向量b=(1,sin(2x+π/4) x∈R,且函数y=f(x)的图像经过(π/4,2设函数f(x)=向量a·向量b 其中向量a=(m,√2) 向量b=(1,sin(2x+π/4) x∈R且函数y=f(x)的图像经过(π/4,2) 设函数f(x)=向量a·向量b-1,其中向量a=(2cosx,1),向量b=(cosx,√3 sin2x),x∈R.求f(x)的递减区间 设函数f(x)=向量a·向量b-1,其中向量a=(2cosx,1),向量b=(cosx,√3 sin2x),x∈R.求函数f(x)的最小正周期 2.3向量数量积1.设平面内向量a,b 满足|a|=|b|=1,且|ka+b|=√3|a-kb|(k∈R+),令f(k)=a·b,求f(k).(用k表示)2.已知向量x=向量a-向量b,向量y=2向量a-向量b,且|a|=1,|b|=2,向量a⊥向量b.(1).求向量x,向量y.(2).求 1.设函数f(x)=向量a*向量b,其中向量a=(cos(x/2),sin(x/2)),(x属于R)向量b=(cosφ,sinφ)(φ的绝对值 数学平面向量与数列结合的题目.急!设函数f(x)=向量a·向量b,其中向量a=(2cosx,cosx),向量b=(sinx,2cosx),x属于R.(1)、求f(x)周期.(2)、求f(x)最大值及此时x值的集合.(3)、求f(x)的单调增区间.求解!急!谢谢 向量a(-cosx,1),向量b(2sinx,cos2x),则f(x)=向量a·向量b最大值 设f(x)=向量a·b,其中向量a=(2,cos2x),b=(1,-2) 求f(x)单调区间 当x属于[0,π/3]时,求f(x)的值域.要正确率 设函数f(x)=向量a×(向量b+向量c),其中向量a=(sinx)设函数f(x)=向量a*(向量b+向量c),其中向量a=(sinx,-cosx),向量b=(sinx,-3cosx),向量c=(-cosx,sinx),x∈R将函数y=f(x)的图像按向量d平移,使平移后得到的图 已知向量a =(cosx,sinx)向量b=(cos2x-1,sin2x)向量c=(cos2x,sin2x-根号3)其中x≠kπ,k∈Z(1)求证:向量a⊥向量b(2)设f(x)=向量a*向量c,且x∈(0,π),求f(x)的值域 f(x)=(x向量A+向量B)(X向量B-向量A)化简 设函数f(x)=向量a×向量b,其中向量a=(m,cos2x),b=(1+sin2x,1),x属於R,且y=f(x)的图像经过点(π/4,2)一 已知向量a=(2sinx,√2cos(x-π/2)+1),向量b=(cosx,√2cos(x-π/2)-1),设f(x)=向量a·向量b,求f(x)最小正周期, 设函数f(x)=向量m·n,其中向量m=(2cosX,1),向量n=(cosX,根号3sin2X)[分数追加]设函数f(x)=向量m·n,其中向量m=(2cosX,1),向量n=(cosX,根号3sin2X)求f(x)的最小正周期与单调递减区间在△ABC中,a,b,c分别是角A,B,C的 已知向量a(cosx,sin2x),b(2cosx,1),设f(x)=向量a乘向量b,求f(x)的最小正周期和最值 设向量a,向量b满足|向量a|=|向量b|=1,向量a●向量b=-1/2则|向量a 2向量b|等于 已知向量a=(coswx.sinwx).向量b=(coswx.根号3coswx)已知向量a=(coswx.sinwx).向量b=(coswx.根号3coswx)已知向量a=(coswx.sinwx).向量b=(coswx.根号3coswx).其中0w2.设函数f(x)=向量a乘以向量b(1)若函数f 设函数f(x)向量a*向量b,其中向量a=(1,-1),向量b=(sin2,cos2x)(1)若f(x)=0且0