f(x)=e^a*x*sin(b*x) (a,b为常数) f(x)的n阶求导(届时x=0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 02:19:41
xN@_;guݲ1MJi M. P(B "1#PKmq+83E]ɜ|̽gFNEwPz@ Lq7[c wn%>{('"IEh~2''peL"+m)7$jcSE:rd%Ey]ـ#n3FߟZ:S I ƧpY)(8PAd 0(ȴv'4(pJHF5E @e_M`Ăf6XӪ{Y tg?yW-s3(\xkɤ L!(<`f)nиY:TMI4#42?wՙWc!e
设f(x)={x^sin(1/x),x>0 a+e^x,x f(x)=e^a*x*sin(b*x) (a,b为常数) f(x)的n阶求导(届时x=0) f(x)=x^5-2(x^3)+3/x,f'(-1)=A -11 B -2 C 2 D 6 E 11如果f(x)=cos(lnx) x>0,那么f'(x)=A -sin(lnx) B sin(lnx) C -sin(lnx)/x D sin(lnx)/x E sin(lnx/x)f(x)=x*(2^x),f'(x)=A 2^x(x+ln2) B 2^x(1+ln2) C x*2^x*ln2 D 2^x(1+x*ln2) E x*2*(1+ln2)f(x)=x^3-x+2 如 如果f(cos x)=sin 3x,那么f(sin x)等于A.sin 3x B.-sin 3x Ccos 3x D-cos 3x 已知函数f x=a(2sin ²x/2+sin x)+b f(x)={(1-e^x)/sin(x/2) ,x>0 ;ae^2x,x 讨论函数f(x)=(x^α)sin(1/x),x>0;(e^x)+β,x 设f(x)=e^x+a,x>0和3x+b,x 设函数f(x)可导,则 [sin f(x)]'= (A)sin f'(x) (B)cos f'(x) (C)f'(x)cos f(x) (D)f(x)cos f'(x) matlab遇到的问题a=214.06;b=364.06;c=300;d=300;e=0.0862*pi;f=30x=0:pi/30:2*piA=2*c*a*sin(x)-2*d*c*sin(e)B=2*a*c*cos(x)-2*d*c*cos(e)C=b*b-d*d-a*a-c*c+2*d*a*cos(x)*cos(e)+2*a*d*sin(e)*sin(x)D=2*a*b*sin(x)-2*d*b*sin(e)E=2*a*b*cos(x)-2*d*b*cos(e)F=b* f(x)是可微的,则df(e^x) =( )A.f'(x)e^xdx B.f'(e^x)dx C.f'(e^x)e^xdx D.f'(e^x)e^x 向量a=(sin(ωx)+cos(ωx),1),b=(f(x),sinωx),其中0 f(x)=a(cos^2 x+sin xcos x)+b,求当a 1.已知函数f(x)=2sin^2 xcos^2 x,x∈R,则f(x)是最小正周期为___的___(奇/偶)函数2.若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)+g(x)=1/(e^x),则有A.f'(x)+g(x)=0 B.f'(x)-g(x)=0 C.f'(x)+g'(x)=0 D.f(x)-g'(x)=0 设函数f ( x )可导,y= f ( x )cos f ( x )的导数为( ).A:y'= f′( x )cos f ( x )- f( x )sin (f ( x )) f′( x ) B:y ′=-f′( x )sin f ( x ) C:y ′= f′( x )cos f ( x )+ f( x )sin (f ( x )) f′( x ) D:y ′= f′( x )cos f ( x )-f( x )s 已知f(x)连续可导,证明g((x,y),(a,b))亦连续.已知f(x)在(-pi/2,pi/2)上连续可导,定义g(x,y)在集合E:=(-pi/2,pi/2)*(-pi/2,pi/2),g(x,y)=[f(x)-f(y)]/[sin(x)-sin(y)],证明g(x,y)在E上连续. 函数f(x)=e^-x的不定积分为A、e ^-x B、-e^-x C、-e^-x+C D、e^-x+C f (x) = ∫[a sin(ln x) + b cos(ln x)]dx