周期性函数递推设数列{an}满足a1=a2=1,a3=2,且对任意正整数n都有an*an+1*an+2≠1,又an*an+1*an+2*an+3=an+an+1+an+2+an+3,求a1+a2+…a100
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:45:17
xRJ@~&IC/Rz`)ASbA{VQB|驯nһ^fvov曍z|/Ϧdή@kLo0\0eLS<D}6H) sARŔ (Õ \|=~w3Mؠ{vܸt;wn85BՐ冖Rt6<6ft)۩%d͌K%2#~7]Gf6i
F*RS@ڦ# ]l6M-UW_]HE| Ά7^i
周期性函数递推设数列{an}满足a1=a2=1,a3=2,且对任意正整数n都有an*an+1*an+2≠1,又an*an+1*an+2*an+3=an+an+1+an+2+an+3,求a1+a2+…a100
周期性数列问题i已知数列{an}满足a(n+1)=2an (0
已知函数f(X)=X/(3x+1),数列{an}满足a1=1,a(n+1)=f(an),证明数列{1/an}是等差数列
已知数列{an}满足a(n+1)=an+n,a1=1,则an=
数列{an}满足a1=a,an+1=1+1/an.若3/2
已知数列{an}满足a(n+1)=an+lg2,a1=1,求an
数列[An]满足a1=2,a(n+1)=3an-2 求an
数列{an}满足a1=2,a(n+1)=2an+n+2,求an
数列an满足a1=1,a(n+1)=an/[(2an)+1],求a2010
已知数列an满足a1=1,a(n+1)=an/(3an+1) 求数列通项公式
数列{an)满足an=4a(n-1)+3,a1=0,求数列{an}的通项公式
数列an满足an+1=根号(an^2+1)+an,a1=a>0,求an通项公式
数列{an}满足a1=2,a(n+1)=-1/(an+1),则a2010等于
数列{an}满足a1=3,a n+1=2an,则a4等于
已知数列{an}满足a1=1,3a(n+1)+an-7
通项公式为an=a(n^2)+n的数列{an},若满足a1
已知函数f(x)=x/(x+1),若数列{An}(n属於正整数)满足A1=1,A(n+1)=f(An)(1)设bn=1/An,求证数列{bn}是等差数列,(2)求数列{An}的通向公式An(3)设数列{Cn}满足:Cn=2^n/An,求数列{C
已知数列满足a1=1/2,an+1=2an/(an+1),求a1,a2已知数列满足a1=1/2,a(n+1)=2an/(an+1),求a1,a2;证明0