sinθ+mcosθ=n,(实数m,n满足1+m^2>n^2)求msinθ-cosθ的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 18:43:34
x)+;C;79<{:l\gضP;7./HƦ\r]Z6I*ҧ;*i!KV=zv.F)Ov,yoӹO;ڞv~si;uf>7Yjʆ@m #U`#$L¶zc rmPuAU=m:b }=|] tM|Bu0ahCݠc i W$i{h㣎YzO{7&.6yv/
sinθ+mcosθ=n,(实数m,n满足1+m^2>n^2)求msinθ-cosθ的值 实数m≠n且m²sinθ -mcosθ +π/3=0 n²sinθ -ncosθ +π/3=0则连接(m,m²)(n,n²)两点的直线与圆心在原点上的单位圆的位置关系是 若 tan A/2 = m /n 则 mcos A - n sin A = 多少 在R上的奇函数y=f(x)为减函数,f(sin(π/2-θ)+mcosθ)+f(2+2m)>0,对任意实数θ成立,求m的范围! 已知奇函数f(x)在(负无穷,0),(0,正无穷)上有意义,且在(0,正无穷)单调递增,f(1)=0,又函数g(θ)=sin^2+mcosθ-2m,若集合M={m|g(θ)求M和N的交集 已知奇函数f(x)在(负无穷,0),(0,正无穷)上有意义,且在(0,正无穷)单调递增,f(1)=0,又函数g(θ)=sin^2+mcosθ-2m,若集合M={m|g(θ)集合N里面是f(g(θ)) 设tan(φ/2)=m/n,那么mcosφ-nsinφ= f(x)=2√3msinxcosx+2mcos^2x+n(m 若对于任意θ∈R恒有sinθ+mcosθ-2m+1 已知a^2+b^2=2,则asinθ+bcosθ的最大值是再加一个..已知sinα+mcosα=n,则msinα-cosα的值为 求sin(mx)/sin(nx)当x趋近于0时的极限为什么书上说用一次洛必达法则就行了呢?怎么能说mcos(mx)/ncos(nx)=m/n呢? 已知m>2,则函数f(θ)=sin²θ+mcosθ.θ属于R的最大值g(m)=多少 已知m>2,则函数f(θ)=sin²θ+mcosθ,θ∈R的最大值g(m)=( )求详解, 已知tanα/2=m/n,求mcosα-nsinα的值已知tan(α/2)=m/n,求mcosα-nsinα的值 设θ∈[0,π /2],是否存在m使得sin^2θ+2mcosθ-m+1 已知sinθ+mcosθ=1,求msinθ-cosθ的值 已知sinα=msinβ,ncosα=mcosβ,且α、β为锐角,求证cosα=根号下(m方-1)除以(n方-1) 已知奇函数f(x)在R上是增函数,是否存在这样的实数m,使得对于所有θ∈[0,π/2]不等式f(4m-2mcosθ)-f(2sin²θ+2)>f(0)都能成立?