f(x)在x0的某一去心邻域内无界是极限不存在的什么条件书上说 函数极限存在是函数有界的充分不必要条件 那么它的逆否命题也应该是充分不必要的吧 怎么书上习题答案是f(x)在x0的某一去心

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 19:57:15
x咽NP_#$^yL\H#K ~b@ 8u04}si quyRѪ0}9&0 \c/qC'wHp 9H#}hCo.MR]JEN0 3J)./=R:ӇQ'P9>ϭ'S5DZ -˲RWEmUZxRwD{KգVSU/n
f(x)在X0的某一去心邻域内无界是在该点极限无穷的----条件? 答案是必要条件 请好心人详细解答如题 为什么f(x)在x0的某一去心邻域内有界是limf(x)存在的必要条件,而不是充要条件为什么f(x)在x0的某一去心邻域内无界是limf(x)=∞存在的必要条件,而不是充要条件 f(x)在x0的某一去心邻域内无界是极限不存在的什么条件书上说 函数极限存在是函数有界的充分不必要条件 那么它的逆否命题也应该是充分不必要的吧 怎么书上习题答案是f(x)在x0的某一去心 高数极限问题x趋于x0~~意义重大x趋于x0的定义中,设函数f(x)在店X0的某一去心邻域内有定义,这个有定义时什么意思?请说明白点,如果对于某一邻域,它里面包含一个值,另函数没定义,譬如y=1/x, 如果f(x)当x趋近x0的极限存在,则函数f(x)在x0的某个去心邻域内有界 f(x)在x0的某一去心邻域内无界,一定lim(x->x0) f(x)=∞吗?举几个栗子吧f(x)在x0的某一去心邻域内无界,一定lim(x->x0) f(x)=∞吗?举几个栗子吧iambaolover说的我不懂啊,不理解这个命题肯定不成立,到 求证明:设f(x)x趋近x0时的极限为A,g(x)x趋近x0时的极限为B,当A>B时,在x0的某个去心邻域内f(x)>g(x). f(x)在x0的某一去心邻域内无界是当x→x0时f(x)→无穷的 条件.当x→x0时f(x)→无穷是f(x)在x0的某一去心邻内无界的 条件.说明原因, 为什么说f(x)在x0某一去心邻域内有界是limx→x0f(x)存在的必要条件而不是充分条件? 问一个极限的问题请问x趋于x0,为什么可以表示成x0的去心邻域,它只表示了x可以在x0的去心邻域内取值,并没有说是从外到内趋于x0的, Y在X0某一去心邻域内无界是Y在X0点极限等于无穷大的必要非充分条件,为什么不不是充分条件?谁能举个例子?顺便求直线上的点到曲线的距离公式 证明:如果在x0的某个去心邻域内函数F(X)≥0,且F(X)在x趋向于x0时的极限为A,则A≥0.不剩感激! 证明:如果在x0的某个去心邻域内函数F(X)≥0,且F(X)在x趋向于x0时的极限为A,则A≥0.不剩感激! 关于x→x0的函数极限定义理解请问函数极限定义中的δ是不是在关于X0的去心邻域内? 函数的极限的定义,跪求,急,高等数学,同济六版,谢谢啊在高等数学中,函数的极限的定义是这样的:设函数F(X)在点X0的某一去心邻域有定义,如果存在常数A,对于任意给定的整数ε(无论它多么 函数连续性定义中为什么不是去心邻域定义 设函数y=f(x)在点x0的某一邻域内有定义,如果limΔx→0Δy=limΔx→0[f(x0+Δx)-f(x0)]=0,那么就称函数y=f(x)在点x0连续这里有点搞不懂的为什么不是在点x0的某 证明若f(x)在点x0处连续且f(x0)不等于0,则存在x0的某一邻域U(X0),当x属于这一邻域时,f(x)不等于0 函数f(x)在x0点的某一邻域内有定义能不能说明在该邻域内f(x)是连续的?