A=(aij) 3阶非零矩阵 且aij=Aij (Aij 为代数余子式)请问为什么能得出 A的转置=A*

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 11:14:01
x)sHT0~9c˹^|ʗ3*<1(a똙~Ozcד݋Mḑk'<~O_N_jxEާ?mߥ|Vˋk]geTO/ lgbݺ'{<|N79j=]7Χ$فD
A=(aij) 3阶非零矩阵 且aij=Aij (Aij 为代数余子式)请问为什么能得出 A的转置=A* 设A=(aij)3*3为非零实矩阵,aij=Aij,Aij 是行列式|A|中元素aij的代数余子式,则行列式|A| A是n阶非零矩阵,A*是其伴随矩阵,且满足aij=Aij,证明A可逆 A是一个3x3阶矩阵,a33=1 ,aij=Aij ,求detA 设A=(aij)mn是正交矩阵,且A的行列式大于零,Aij是aij的代数余子式(i,j=1,2….,n),证明:Aij=aij,i 矩阵,行列式求值已知实矩阵A = (aij)3*3满足条件:(1)aij = Aij,Aij是aij的代数余子式,(i,j=1.2.3);(2)a11 不为0.计算|A|的值. 设A=(aij)nxn是正交矩阵,且A的行列式大于零,Aij是aij的代数余子式(i,j=1,2,.n),证明:Aij=aij,i,j=1,2,设A=(aij)nxn是正交矩阵,且A的行列式大于零,Aij是aij的代数余子式(i,j=1,2,.n),证明:Aij=aij,i,j=1,2,.,n 矩阵的题.Aij三阶非零矩阵,如果代数余子式Aij=aij ,求 对A 取行列式的...矩阵的题.Aij三阶非零矩阵,如果代数余子式Aij=aij ,求 对A 取行列式的结果,即IAI 几题大学线性代数的计算,证明题1.已知实矩阵A=(aij)3*3满足条件aij=Aij(i,j=1,2,3),其中Aij是aij的代数余子式,且a11≠0,计算行列式A的值.2.设A为n阶非零方阵,A*是A的伴随矩阵,若A*=AT,证明行列式A 设n阶矩阵A=(aij),其中aij=|i-j|,求|A|线性代数~ n阶矩阵A=(aij),其中aij=|i-j|,求|A|. n阶实矩阵A=(aij)是正定阵,其中aij=1/(i+j) 设A=(aij)为n阶方阵,且aii>0,aij 线性代数问题 为什么aij+Aij=0 可以得出 |A|=-|A|^2 ,Aij是aij的代数余子式 设A=(aij)n×n是上三角矩阵,A的主对角线元相等,且至少有一个元素aij≠0,证明A不能 .设A=(aij)n×n是上三角矩阵,A的主对角线元相等,且至少有一个元素aij≠0,证明A不能与对角矩阵相似 三阶矩阵A=(aij)3x3的特征值为2,3,4 ,Aij为行列式A中元素aij的代数余子式,求 A11+A22+A33的值? 已知三阶实矩阵A满足aij=Aij(i=1、2、3;j=1、2、3)求detA 线性代数:为什么解析说aij=Aij?