设f(t)=lim[x→∞] t [(x+t)/(x-t)]^x ,则f'(t)=________.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:27:32
xjSA_% jב$}R˜h6͵]7ڍX
w)T۷pB[R30gy'|syVm!,íޣÓ`qƴsW^M3W/_vf?L0F-E3"_ף*{3ۀg
qΚjgo4&,c։甒Npk!g8 i"0ya5tԀT.@E]PR'W,憅wN6%Y.~oz~|Ua1uX0){Ĩ]fkZJFHp\ Q:(ԊR(8IawX\rˢ*2$ʐ
tȩpuVwd)u_~\|ˍֵ6}GЙF$WJoF2%6`I1;lee AP:9/J0\`BYU/y
设f(t)=lim[x→∞] t [(x+t)/(x-t)]^x ,则f'(t)=________.
设f(t)=lim(x→∞)t(1+2/x)^(x-t),求f'(t)
设f(x)=lim(t→∞)(1+π/t)^xt,求f(ln2)
设函数f(x)=lim(t+x/t-x)^t,(t趋于无穷)求f'(x)
设f (x)在x=0处可导,且f (0)=0,求证:lim(x→∞)f (tx)-f (x)/x=(t-1)f' (0)
极限与定积分设f(t) = ∫[1~(1+1/t)] √(1 + x^t) dx求lim(t-->∞) [t * f(t)]
设f(x)=lim(1+1/x)^2tx,(x→∞),求f'(t).急答案为什么是t*(e^2t).题目打错了.是f(t)=lim(1+1/x)^2tx,(x→∞)答案为什么是t*(e^2t).而不是e^2t+2t*(e^2t)
设f(x)是可导函数且f(0)=0,F(x)=∫t^(n-1)f(x^n-t^n)dt,求lim(x→+∞)F(x)/x^2n设f(x)是可导函数,且f(0)=0,F(x)=∫t^(n-1)f(x^n-t^n)dt,求lim(x→+∞)F(x)/x^2n答案是f'(0)/2n求详解
f(t)=lim x→无穷大 [t(1+1/x)^2tx] 求f'(t)
设f(x)具有连续导数,且满足f(x)=x+∫(上x下0)tf'(x-t)dt求lim(x->-∞)f(x)
设F(x)=∫(0趋向x) [(x-t)f(t)dt]/(sinx)^2 求lim(x趋向0)F(x),f(0)存在,
设f(x)为连续函数,a≠0,F(x)=(x^2/x-a)∫(x->a)f(t)dt,则lim(x->a)F(x)等于
设f(x)=lim(t→+∞)(x/(2+x∧2-e∧(tx))),讨论f(x)的可导性求详解
急,定积分相关问题!1.设f(x)在[0,+∞)内连续,且lim(x→∞)f(x)=1.证明函数y=[e^(-x)]∫(0→x)(e^t)f(t)dt满足微分方程(dy/dx)+y=f(x),并求lim(x→∞)y(x).中的第二问答案“由条件lim(x→∞)f(x)=1,从而存在X0>0,当x
设函数t(x)在点X=6处连续,且f(6)= -5 则 lim f(x)=?lim是 x->6
导数题,7.设导函数f^(x)=x³-2,求limf(1+2t)-f(1-t)/t的值 lim[f(1+3t)-f(1)]/(3t)=lim[f(1+3t)-f(1)]/(3t)=lim[f(1+2t)-f(1-t)]/(3t)=(1/3)lim[f(1+2t)-f(1-t)]/t因为f′(x)=x³-2所以f′(1)=1-2=-1所以lim[f(1+3t)-f(1)]/(3t)=-1所以(1/3
设f(t)=lim(x趋近于无穷)(t^2+t)(1+1/x)^-2tx,则f'(t)= 第二题设f(t)=lim(x趋近于无穷)(t^2+t)(1+1/x)^-2tx,则f'(t)=第二题第二空
极限lim[x-x^2ln(1+1/x)] 其中x趋向于正无穷大lim[x-x^2ln(1+1/x)]设t=1/x =lim[1/t-1/t^2ln(1+t)] t→0=lim[1/t-1/t]=0 t→0为什么不能这么做