O是平面内一定点,ABC是平面上不共线的三点,动点P满足OP=OA+λ(AB+AC),λ属于零到正无穷,则P点的轨迹定过三角形ABC的 外心?垂心?内心?还是重心?OP,OA,AB,AC都是向量

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 11:39:57
x)6cӝ_]Ɏf=oک xɎާ|V˓ OVgض?Q{:9yOvidžgk?:O;fuMzwŋ;64IO. RxdO5Vb ^8:@8:l r턉/m5AA<Óv65 Jl @>
O是平面上一定点,A,B,C是平面上不共线三点,求p的见相册同名图片 已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/sinc+AC/sinb),则P的轨迹一定通过△ABC的 O是平面上一定点,ABC是平面上不共线的三个点,动点P满足 OP=OA+λ( AB|AC| + AC|AC| ),则P的轨迹一定通过 1.o是平面上一定点,A B C 是平面上不共线的三个点 动点P满足 向量OP=向量OA+λ(向量AB+向量AC) λ≥0 则P一定通过三角形ABC的 重心 对么 2.o是平面上一定点,A B C 是平面上不共线的三个点 λ≥0 O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足向量OP = 向量OA+λ(向量AB +向量AC ),O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足向量OP = 向量OA+λ(向量AB +向量AC λ O是平面内一定点,ABC是平面上不共线的三点,动点P满足OP=OA+λ(AB+AC),λ属于零到正无穷,则P点的轨迹定过三角形ABC的 外心?垂心?内心?还是重心?OP,OA,AB,AC都是向量 平面向量的基本定理及坐标表示一、向量e1、e2是平面内一组基底,若ke1+he2恒成立,则k= h= O是平面上一定点,A、B、C是平面上不共线的三点,动点满足向量OP=向量OA+K(向量AB/向量AB的模+向量AC/向 O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/|AB|+AC/|AC|),λ∈[0,+∞),为啥是外心啊 已知O是平面上的一定点,A,B,C是平面上不共线的三个点已知O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足OP=(OB+OC)/2+λ(AB/|AB|cosB+AC/|AC|cosC).λ∈(0,+∞),则动点P的轨迹一定通 向量与三角形的五心O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/|AB|+AC/|AC|).λ∈[0,+∞)问 P点一定过三角形的什么心.O是平面上一定点,A,B,C是平面上不共线的三个点, 关于向量和三角形五心的问题,O是平面上一定点,ABC是平面上不共线的三个点,动点P满足向量OP=向量OA+λ(向量AB/|向量AB|+向量AC/|向量AC|),(λ∈[0,+∞)),则P点的轨迹一定通过△ABC的A、外心 B、内心 O是平面上一定点,ABC是平面上不共线的三个点,动点P满足向量OP=向量OA+m(向量AB+向量AC),m属于【0,+无穷),则P的轨迹一定通过三角形ABC的 心. 已知点O是平面上一定点,A、B、C是平面上不共线的三点若懂点P满足OPA+入(AB/|AB|+AC/|AC|),入∈[0,+无穷大),则点P的轨迹一定过三角形ABC的A、内心 B外心 C垂心 D重心.其中“入”是个符号,求解体图 设O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足向量OP=向量OA+t(向量AB/ 向量AB的模*cosB+向量AC/ 向量AC的模*cosC),t属于(0,+无穷),则动点P的轨迹一定过三角形ABC的什么心? 三角形四心O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB+AC),λ∈[0,+∞),则P的轨迹一定通过△ABC的(  ) 已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点p满足向量OP=OA+λ(AB+AC)则P的轨迹一定经过△ABC的什么心?λ∈【0,正无穷】 为啥一定过重心?入 取0.0001时他还过重心? 已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点p满足向量OP=OA+λ(AB+AC)则P的轨迹一定经过△ABC的什么心?λ∈【0,正无穷】 已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(向量AB/sinc+向量AC/sinb),则P的轨迹一定通过△ABC的