(1)计算sin²45°—cos²60°—3tan30°(2)Rt△ABC中,∠C=90°,a=3,c=5,求∠A的锐角三角函数值.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 00:12:01
x͐J@FҬTl
|$'/16E1j!'=yT!zQbS^fSSIz7E"͇ 86_ۣ(QPq{3 m4h:Wk3?+Ya)6#terEkoOq}z7ʣT5.s
oo x{9%0F +
ZGU>bg*\
=:1P۞)vmp_R"^J
\'eѐ&W*(nRA`1"s )GT
6T3w1܆cPXjJDl`k}u
计算sin²1°+sin²2°+……+sin²89°
计算:① sin²45°+cos²30°-1/3tan²60° ②1/tan45°-cos²60°/1+sin30°
sin²1°+sin²2°+sin²3°+.+sin²89
计算1-2sin²22.5
(1)计算sin²45°—cos²60°—3tan30°(2)Rt△ABC中,∠C=90°,a=3,c=5,求∠A的锐角三角函数值.
初三数学(三角函数1)1、求sin²1°+sin²2°+sin²3°+……+sin²89°的值.
设tanα=—1/2,计算1/(sin²α-sinαcosα-2cos²α)
sin²1°+sin²2°+sin²3°+...+sin²88°+sin²89°+sin²90°=等于多少?
化简[tan(45°-α)]/[1-tan²(45°-α)]*[(sinα*cosα)/(cos²α-sin²α)]
sin²1°+sin²2°+sin²3°+.+sin²89°= -1为什么?
sin²1°+sin²2°+…+sin²88°+sin²89°=
求sin²1°+sin²2°+sin²3°……sin²89°=?
sin²1°+sin²2°+……+sin²88°+sin²89°=?
sin²1°+sin²2°+sin²3°.+sin²89°=
证明:(sin²)²a+(cos²)²a=1-2sin²acos²a.
计算不定积分 ∫(x²/(1+x²))dx 和 ∫sin²x dx
sin²1°+sin²2°+sin²3°+...+sin²88°+sin²89°=
计算(1²+3²+...+99²)-(2²+4²+...+100²)急!