数列{an}满足a1=33,a(n+1)-an=2n,则an/n的最小值为_an=n+33/n-1≥2√33-1所以:n=33/n所以:n=√33n=5或者n=6a5/5=5+33/5-1=10.6,a6/6=6+33/6-1=10.5
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 16:44:24
xՑJ1_.6MBrH|Q=(z)Z\JAⱠb7Y6k=
O[VA$,do̤btYޭO*α 8Ѡ`Sj ^7̆&_ՋC9V)6^N?W%(k]}(7Ԃ%HݎZC2 ?v2ax{2)k)bCr)4K4bTCA0V
1Fllg B3#̌.G~eCgUdzIh}#7Ά6V=89iN ݳKQ
已知数列{an}满足a1=33,a(n+1)-an=2n,则an/n的最小值
已知数列{an}满足a1=33,a(n+1)-an=2n,求an/n的最小值
已知数列{an}满足a(n+1)=an+n,a1=1,则an=
数列{an}满足a1=2,a(n+1)=2an+n+2,求an
数列an满足a1=1,a(n+1)=an/[(2an)+1],求a2010
已知数列{an}满足a(n+1)=an+lg2,a1=1,求an
数列[An]满足a1=2,a(n+1)=3an-2 求an
数列{an}满足a1=2,a(n+1)=-1/(an+1),则a2010等于
数列{an}满足a1=3,a n+1=2an,则a4等于
已知数列{an}满足a1=1,3a(n+1)+an-7
已知数列an满足a1=1,a(n+1)=an/(3an+1) 求数列通项公式
数列{an)满足an=4a(n-1)+3,a1=0,求数列{an}的通项公式
数列{An}满足a1=1/2,a1+a2+..+an=n方an,求an
数列{an}满足a1=1,an=a(n-1)+1/(n2-n),求数列的通项公式
已知数列an满足:a1=1,an-a(n-1)=n n大于等于2 求an
已知数列an满足a1=100,a(n+1)-an=2n,则(an)/n的最小值为
已知数列an满足a1=2,an=a(n-1)+2n,(n≥2),求an
已知数列满足a1=1,an-a(n-1)=n-1,求其通项