已知A是三阶矩阵,r(A)=1,则λ=0是() B至少是A的二重特征向量.还有,λ=0与矩阵的秩有何关可是为什么是“至少是A的二重特征值”而不是“必是A的二重特征值”?
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 02:16:59
xTN@Yi0b$
"!BbHx!@EB@8#\?VBcPXJ<8spWWl1
w~<,҅G7g
3i8MEAU7w'XQS?(GŸa@4lD$F 3{5H%*U$`xr6Z8Їܬ>sič0lS#t #kQ!W]%|ꪎhc?IjF"0YJ
矩阵A,R(A)=0,可以得出|A|=0,A*=0矩阵吗?是三阶矩阵,R(A)=1或2
已知矩阵A和矩阵AB秩相等[r(A)=r(AB)],证明矩阵A和矩阵AB的值域相等(R(A)=R(AB)).研究生课程矩阵理论里的内容
线性代数矩阵对角化的一道题目设矩阵B={0,0,1;0,1,0;1,0,0},已知矩阵A相似于B,则r(2I-A)+r(I-A)等于多少?
已知A=[1 2 3 ,2 t 6 ,3 6 9] (A是三阶矩阵),B是三阶矩阵 且r(B)=2 若AB=0 则t=? 求详解 谢啦
设A为r*r阶矩阵,B为r*n阶矩阵且R(B)=r,证明:(1)如果AB=0,则A=0(2)如果AB=B,则A=E
已知矩阵a=[ ],且三阶方镇B的秩为2,则r(a)-r(ab)=?a=1 4 60 2 50 0 3
若R(AB)=R(B) 则A是行满秩矩阵还是列满秩矩阵 为什么
已知A是三阶矩阵,r(A)=1,则λ=0是() B至少是A的二重特征向量.还有,λ=0与矩阵的秩有何关可是为什么是“至少是A的二重特征值”而不是“必是A的二重特征值”?
问个超级弱智的问题、已知A是三阶矩阵,r(A)=1,特征值=0为什么一定是重根…
问一个线性代数问题:已知两个三阶非0矩阵A、B,则由AB=0,为什么可以推出r(A)+r(B)≤3
矩阵为四行三列矩阵 1 2 1 2 2 -2 -1 t 5 1 0 -3 已知R(A)=2,求t
线性代数:满秩、行满秩、列满秩矩阵与另一矩阵的相乘后,新的矩阵的秩?如Am*n矩阵,另一矩阵B:1、A为满秩矩阵时,则r(AB)=r(BA)=r(B);2、A为行满秩矩阵时,则r(BA)=r(B);3、A为列满秩矩阵时,则r(AB)=r(B
矩阵秩性质问题若 矩阵A是m×s矩阵,B是s×n矩阵,若AB=0,则R(A)+R(B)
设A三阶矩阵,r(A)=1,则r(A*)=()
矩阵r=r(A)什么意思
已知矩阵求逆矩阵设矩阵A=[1 -1 ] [-1 0]则A^-1=
设二阶矩阵A、B都是非零矩阵,且AB=0 则R(A)=?
设4x4矩阵A的伴随矩阵为A*,若r(A)=4,则r(A*)=?若r(A)=3,则r(A*)=?若R(A)< 3,则R(A*)?