α+β=2π/3,则y=sin^2α+cos^2β的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 20:53:08
xSMN@ e6ѴD]A" . RTK0m3EBn7_[-q-u͔"90v.S_Ik r> CG q-.D et%a664T\LD-* "'5I̿pT.ͤUC#;i8’IcZCڕR̭ɅF.[lC%upI|+B4ilb/:1 s1 .AMT_S$C2c@^?.qh!͎H&!.dlSxtc0Z#FRJd7Wi?? ^~{ı~k:.}0xpbr}
已知sina=3/2sin^2α+sin^2β,则函数y=sin^2α+sin^2β的值域为1 若 3sin^2α +2sin^2β =2sinα 求y=sin^2α+sin^2β的最大值 化简sin(α+β)+sin(α-β)+2sinαsin(3π/2-β)= 设α,β,γ∈(0,π/2)且(sinα)^2+(sinβ)^2+(sinγ)^2=1求函数y=(sinα)^3/sinβ+(sinβ)^3/sinγ+(sinγ)^3/sinα 的最小值. 若sin^2β-sin^2α=m,则sin(α+β)sin(α-β) 1.已知sinα=4/5,α∈(π/2,π),tan(α-β)=1/2 则tan(α-2β)=?A.-24/7 B.-7/24 C.24/7 D.7/242.函数y=sin(x/2)+sin[60-(x/2)]的最大值?A.2 B.根号3 C.根号2 D.13.函数y=(cos2x)^2-(sin2x)^2的最小正周期?A.2π B.4π c. 已知sin(3π-α)=-2sin(π/2+α)则sinαcosα 给定性质①最小正周期为π②图象关于x=π/3对称,则下列四个函数中同时具有性质①②的是()A.y=|sin(x)| B.y=sin(x/2+π/3) C.y=sin(2x-π/6) D.y=sin(π/3-2x)+sin(2x) 已知3sin²α+2sin²β=2sinα,求cos²α+cos²β的取值范围已知3sin²α+2sin²β=2sinα则有2sin²β=2sinα-3sin²α即sin²β=sinα-1.5sin²α所以cos²β=1-sin²β=1-(sinα-1.5sin²α)=1- 3(sinα)^2+2(sinβ)^2=2sinα则(sinα)^2+(sinβ)^2取值范围^ 已知3sinα²+2sinβ²=2sinα,则sinα²+sinβ²的取值范围 已知2sin²α+sin²β=3sinα,则sin²α+sin²β的值域是 2sin²α+sin²β=3sinα,则sin²α+sin²β的取值范围是 若sinαsinβ=1/2 则y=cosαcosβ 的取值范围为? 函数y=2sin(2x+α)(-π 已知 sinα + cosα / sinα - cosα = 2 ,则 sin(α-5π) x sin(3π/2-α)等于A,3/4B,±3/10C,3/10D,-3/10 将函数f(x)=sin(2x-π/3)的图像左移π/3,在讲图像上各点横坐标压缩到原来的1/2,则所得的图像的解析式为:A.y=sinx B.y=sin(4x+π/3)C.y=sin(4x-2π/3) D.y=sin(x+π/3) 给定性质①最小正周期为π②图象关于x=π/3对称,则下列四个函数中同时具有性质①②的是?A.y= sin |x| B.y=sin(x/2+π/6) C.y=sin(2x-π/6)D.y=sin(2x+π/6)麻烦老师写出细节.