形似An+1=pAn+q的n次方的数列问题例如A(n+1)=2A(n)+5^n的通项公式(括号为下标)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 20:38:48
xSnP/D' *Rʤz@#B@jy"jIZJ0Es}/7JɮRZ1gf9b&ϝ,H\;w|GfkXyYT:Xr=źJ1ݶ׵ЧYqfJjx+Szcw'@C޼fۙwE .IJ(L .ۚ3]~R&2J0VFgOBAqk˒[i뺩htwϏdټљC{݈g uG"PAg< QDB&~u в kʆZbzP>{[OR ؃ b9zߚ@^~.]hT1jdIg>mK|s؂dq~Q[P plȏ J#bj:QQL1X)*euE_DwB/2OW]g:rYm oAX7š@W"77_P,^Oͧg|)6xc.U6B0ir*OWq=H0FY+VH Ȼ$$ f]TÇf+B9Iʻ[Š
形似An+1=pAn+q的n次方的数列问题例如A(n+1)=2A(n)+5^n的通项公式(括号为下标) 已知数列{an},其中an=2的n次方+3的n次方,且数列{a(n+1)-Pan}为等比数列,则常数P为? 设数列{an}的前n项和为Sn,已知Sn=pan+q,a1=2,a3=1/2,求p,q 如果数列an满足a{n+1}=pan+q(p,q为常数),则称an为H数列.已知数列an的前n项和为Sn,若Sn=2an-1,1)求an的通项公式2)证明an是“H数列” 分式一次型递归数列不动点无解时无穷数列解的周期数列{An} An+1=(pAn+q)/(rAn+h)设不动点x=An+1=An构成一个二次方程 此方程为递归数列的特征方程 特征方程无解时 数列为有穷数列(另脚表n与n+1 已知数列{an}的通元an=3n+1,求证:1、{an}是等差数列;2、若bn=pan+q(pq为常数)求证:﹛bn﹜也是等差数列 1.如果数列{an}、{bn}是项数相同的两个等差数列,p、q是常数,那么{pan+qbn}是等差数列吗?为什么?2.已知数列{an}的各项均不为零,且an=3a(n-1)/a(n-1)+3(n≥2),bn=1/an.求证:数列{bn}是等差数列.3.已知等差 已知各项均为正数的数列{an},a1=1,Sn是数列{an}前n项的和,有2Sn=2Pan^2+qan-p,(p,q∈R)(1)求证:当q=p时,数列{an}是等差数列,并求出{an}通项公式(2)是否存在实数p,q,且p ≠q,使得数列{an}是等差数列?若 高中数列的基本类型除了a(n+1)-an=d 和an(n+1)=pan 之外还有哪些可求通项公式的常见类型? 高中求数列通项几种类型有几个类型我不会,老是也没讲,①A(n+1)=pAn+q的n次幂②An=pAn+qn+r(p不为0,1.q,r不为0)③A(n+1)=pAn÷(An+q)④A(n+1)=An的r次幂第二个是A(n+1)等于 已知数列{an}是首项为2的等比,且a(n+1)=pan+2^n,求p和an的通向 高一数列题 !已知数列{an}的各项都是正数,且满足:a0=1,an 1=1/2an*(4-an).(n属于N)解析说,等式两边取对数 后转化为a(n+1)=pan+q,再用待定系数法求解 是什么意思?怎样取对数? 已知各项均为正数的数列{an}中,a1=1,Sn是数列前n项和,对任意n∈N+有2Sn=2pan²+pan-p(p∈R)求(1)p的值(2){an}通项公式(3)记bn=(4Sn/n+3)×2的n次方,求bn前n项和Tn 解释下设辅助数列法求An An+1=pAn+q 数列(An)的 前n项合为Sn=3/4An-1/3x(2的N+1次方)+2/3 求证数列(An+2的n次方)是等比数列3Q~ a(n+1)=Pan+Q这样的数列可以用构造函数求an通项,但是当P为常数且小于0.Q=2n-1这样时怎么求通项即当P或Q不为常数时,这样的数列怎么求,我知道当P大于0的求法,但是P小于0呢 已知数列{an}的前n项和为Sn,且满足2Sn=pan-2n,n属于N*,其中常数p>2,(1)求证:数列{an+1}为等比数列 已知数列an是正项数列,a1=1,前n项和为sn,且满足2sn=2pan^2+pan-p,求p的值,an的通项公式若bn=4sn/n+3*2^n,数列bn的前n项和为Tn,求tn