∫∫∫(x+y+z)∧2dV,其中Ω由锥面z=√(x∧2+y∧2)和球面x∧2+y∧2+z∧2=4所围立体,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 20:05:05
x){ԱЮԮzQr0۞X{n)_NYr*G@@ +A$PI='4@ɳΆ<_dd"}ڧ_`gC> ?_7Y`}:@|Clʹ}ؔmPX̼mvh@ oӌ3:gO96HHr#MY6yv !
∫∫∫(x+y+z)∧2dV,其中Ω由锥面z=√(x∧2+y∧2)和球面x∧2+y∧2+z∧2=4所围立体, 计算三重积分∫∫∫Z√(x∧2+y∧2)dv,其中Ω是由曲面z=x∧2+y∧2,平面z=1所围成的立体 ∫∫∫z^2dv,其中U是球面X^2+Y^2+Z^2 三重积分∫∫∫z∧2dv,其中Ω是由球面x∧2+y∧2+z∧2=2z所围成的闭区域 计算∫∫∫(x+y+z^2)dV,其中Ω即区域范围是由曲面x^2+y^2-Z^2=1和平面z=H,z=-H(H>0)所围成. ∫∫∫z^2dV,其中Ω是两个球x^2+y^2+z^2 ∫∫∫(2xy^2+2yx^2+z)dv,其中,Ω={(x,y,z)|x^2+y^2+z^2≤2z}如题 计算三重积分∫∫∫(x^2+y^2+z^2)dv,其中Ω由z=x^2+y^2+z^2所围成的闭区域. 计算∫∫∫(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z与平面z=2,z=8所围成的闭区域 用球坐标计算三重积分I=∫∫∫z^2dv 其中图形是由x^2+y^2+z^2 二重积分 求∫∫∫z^2dv 其中z>=根号下(x^2+y^2) 且x^2+y^2+z^20) 计算I=∫∫∫Ω(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z及平面z=2所围成的区域. 计算三重积分∫∫∫(|x|+|y|+|z|)dv,其中Ω:x^2+y^2+z^2≤a^2,哪位大师来解下, Ω由4z^2=25(x^2+y^2)和平面z=5围成,求∫∫∫(x^2+y^2)dv 计算三重积分 ∫∫∫Ωdv,其中Ω是由曲面x^2+y^2=2z及平面z=2平面所围成的闭区域 利用柱面法求I=∫∫∫1/(x^2+y^2+z^2)dv其中积分区域是由z=1与z=x^2+y^2所围城的闭区域 求∫∫∫A(x^2+y^2)dv其中A是由曲线y^2=2z和x=0绕z轴旋转一周而成的曲面与平面z=4 三重积分比较I1,I2大小设Ω由平面x+y+z+1=0,x+y+z+2=0,x=0,y=0,z=0围成,I1=∫∫∫[ln(x+y+z+3)]²dV,I2=∫∫∫(x+y+z)²dV,比较I1,I2大小