已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号3/3,直线l:y=x+2与以原点为圆心,以椭圆C为短半轴长以椭圆C的短半轴长为半径的圆相切. (1)求椭圆C的方程. (2)若AC,BD为椭圆C的两条相互垂
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 12:37:57
xTNG~U*zmR%Ǡ?n؍Jze B(R5 !+^gk6(R.b5sw6QLʆş?Ht.85HLZI5,?'櫭ơzfH͋]cr
>" |be=l;_<$ =7xQf\4g~@>AmnXZeoPWb*aϧ$O777paWLo_ z]K|yMK>/^nFL|٥6\=jK?J#@i4a^h7VɧݚK|꼶Ke0@$?
DGRLoețs|nƦX?30
ey2DZA9S ?:l@j_AnL lA]-74 [[l
ďūY0#o*v==Yp8DAPRNa$+'GaMK&=WftUH:tVlڷb5DLfԀBL
2i84i5w3; \*O(1B$,wׯ[
kO/+~,fݤ},?X߂=@nbxc;sB)byLj]]ci]UT\Uq)㶡QiN\l5Y4Ql[DWG%Ƙi:cѬôX<]EJ.zKVՈGbVVSME)|$KW_zm
已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号3/3,直线l:y=x-2与以原点为...已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号3/3,直线l:y=x-2与以原点为圆心,以椭圆C1为短半轴已知椭圆C1:x^2/a^2+y^2/b^
已知椭圆C1:X^2/a^2+y^2/b^2=1,椭圆C2焦点在y轴上,椭圆C2的长轴长与椭圆C1的短轴长相等,且椭圆C1与椭圆C2离心率相等 则椭圆C2的方程为
在平面直角坐标系xOy中,已知椭圆C1:x^2/a^2+y^2/b^2=1的离心率为√2/2直线n:y=1与椭圆C1相切(1)求椭圆C1方程(2)设直线l同时与椭圆C1和抛物线C2:y^2=4x相切,求直线l方程.
在平面直角坐标系xOy中,已知椭圆C1:x^2/a^2+y^2/b^2=1的离心率为√2/2直线n:y=1与椭圆C1相切(1)求椭圆C1方程(2)设直线l同时与椭圆C1和抛物线C2:y^2=4x相切,求直线l方程
已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号3/3,直线l:y=x-2与以原点为圆心,以椭圆C1为短半轴已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号3/3,直线l:y=x+2与以原点为圆心,以椭圆C1为短半轴
在平面直角坐标系xOy中,已知椭圆C1:X^2/a^2+y^2/b^2=1(a>b>0)的左焦点为F1(-1.0)且点p(0.1)在C1上.1求椭圆C1的方程2设直线l同时与椭圆C1和抛物线C2:y^2=4x相切,求直线l的方程
已知焦点在y轴上的椭圆C1=y^2/a^2+x^2/b^2=1,经过A(1,0),且离心率为根号3/2,求椭圆C1的标准方程
一道数学解析几何题,椭圆,抛物线的已知椭圆C1:x²/a²+y²/b²=1(a>b>0)的离心率为√3/3,直线l:y=x+2与以原点为圆心、以椭圆C1的短半轴为半径的圆相切. (1) 求椭圆C1的方程; (2)
已知椭圆C1:x^2/a^2+y^2/b^2=1的左右两个焦点F1,F2,离心率为1/2,又抛物线C2:y^2=4mx(m>0)与椭圆C1有公共已知椭圆C1:x^2/a^2+y^2/b^2=1的左右两个焦点F1,F2,离心率为1/2,又抛物线C2:y^2=4mx(m>0)与椭圆C1有公共焦
已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号3/3,直线l:y=x+2与原点为圆心,以椭圆c1的短半径为半径的圆相切1)求椭圆c1的方程 2)设椭圆c1的左焦点为f1,右焦点f2,直线l1过点f1且垂直于椭圆长
已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号3/3,直线l:y=x+2与与以原点为圆心,椭圆C1的短轴长为半径的圆相切.(1)求椭圆C1的方程
已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号3/3,直线l:y=x+2与与以原点为圆心,椭圆C1的短轴长为半径的圆相切.(1)求椭圆C1的方程
已知椭圆C1:x^2/a^2+y^2/b^2=1的内切圆C2:x^2+y^2=b^2的一条切线,已知椭圆C1:x^2/a^2+y^2/b^2=1的内切圆C2:x^2+y^2=b^2的一条切线,交椭圆于A、B两点,且切线AB与圆的切点Q在y轴的右侧,F(c,0)是椭圆的右
高二数学--抛物线定义及方程已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根2/2,直线L:y=x-2根2与以圆点为圆心,以椭圆C1的短半轴为半径的圆相切.(1)求椭圆C1的方程;(2)设椭圆C1的左焦点为F1
已知椭圆C1:X^2/a^2+y^2/b^2=1(a>0,b>0)的左右焦点分别为F1,F2,其中F2也是抛物线C2:y^2=4X的焦点,M是C1与C2在第一象限的交点,且|MF2|=5/3求:(1):椭圆C1的方程(2):已知菱形ABCD的顶点A,C在椭圆C1上,
已知F1,F2分别为椭圆C1:y^/a^2+x^2/b^2=1的上下焦点,其中F1也是抛物线x^2=4y的焦点,点M是C1,C2在第...已知F1,F2分别为椭圆C1:y^/a^2+x^2/b^2=1的上下焦点,其中F1也是抛物线x^2=4y的焦点,点M是C1,C2在第二象
椭圆C1与椭圆C2:x^2/a^2+y^2/b^2=1(a>b>0),有相同的焦点,且C1的短轴长与C2的长轴长相等,则C1的方程为
已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y^2=4x的焦点,M是C1、C2在第一象限的交点,且|MF2|=5/3,求椭圆C1的方程.