已知定义域在R上的函数f(x)满足f(x+y)=f(x)+f(y),且x>0时,f(x)>0 解不等式f(a^2-4)+f(2a+1)<0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:52:56
xRn0"h֔!Z42x,v bm$0q0Z4o'V1(e/%y HaX^U5(n29ᷕbU rw_CS;~ZdG-W-ػz\L>U?3owd5$K&8w^ݍLZLOO9Em~]AfF-rQ8x^y߀ŪSީP!:E-.N;}[zjһË6{'8B~B,—auy)f|K7#%,xw$:yyfܦ 63*#*$*"9G S>ӱw f3`nt-G
定义域在R上的函数f(x+y)满足f(x+y)=f(x)+f(y)+2xy (x,y属于R) 已知f(1)=2 求f(-3)定义域在R上的函数f(x+y)满足f(x+y)=f(x)+f(y)+2xy (x,y属于R) 已知f(1)=2 求f(-3) 已知定义域在R上的函数f(x)满足f(x)+3f(-x)=3x-1,求定义域 已知定义域在R上的函数f(x)满足:f(x)+3f(-x)=3x-1,求f(x) 已知函数f(x)在定义域R上满足f(x)*f(x+2)=13 若f(1)=2 求f(99)的值 已知定义域在R上的函数f(x)满足f(x)=-f(x+3/2)且f(1)=3,则f(2014)= 已知定义域在R上的函数f(x)满足f(x+1)=3x+ 1)求函数f(x)的解析式.2)用定义域证明:函数f(x)在R上单调递 已知定义域R上的函数f(x)满足f(2+x)=‐f(2-x),当x 已知定义域在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间【0,2】上是增函数,则:A f(-25) 已知定义域在R上的偶函数f(x)满足f(x+2)=f(x)则f(9) 已知定义域在R上的函数f(x)满足f(x+y)=f(x)+f(y)且当x>0时,f(x)>0.判断函数在R上的单调性并证明 已知函数f(x)是定义域在R+上的减函数且满足f(xy)=f(x)+f(y),f(根号2)=1求f(1)的值 若f(x)+f(3-X) 高一函数题:已知定义域在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间【0,2】上是增函数.已知定义域在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间【0,2】上是增函数,若方程f(x)=m(m>0)在区间【-8,8】上 已知定义在R上的函数f(x)满足f(1)=2,f'(x) 已知定义在R上的函数f(x)满足f(1)=2,f'(x) 已知f(x)是定义域在R上的奇函数,且满足f(x+2)=-f(x)当0 已知在定义域r的函数上fx满足f(x+3)=-f(x)且f(-1)=1求f(2012)已知定义域在R上的函数f(x)满足f(x+3)=-f(x),且f(-1)=1求f(2012) 已知定义域在R上的函数f(x)满足f(x+y)=f(x)+f(y),且x>0时,f(x)>0 解不等式f(a^2-4)+f(2a+1)<0 已知定义域在R上的函数f(x)满足f(x+y)=f(x)+f(y),且x>0时,f(x)>0 解不等式f(a^2-4)+f(2a+1)<0