设X1、X2是方程X^2-Xsin(π/5)+cos(4π/5)=0的两根,求arctanx1+arctx2 设arctanx1=a,arctanx2=b,则tana设X1、X2是方程X^2-Xsin(π/5)+cos(4π/5)=0的两根,求arctanx1+arctx2设arctanx1=a,arctanx2=b,则tana=x1,tanb=x2又因为x1+x2=sin(π/5),x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 12:01:46
x){n_g3?8#݈<
&`Y-Ov,y`γME%y F(midc&H=d[al+w<Ɏ]@@%pt*l}*3 Z@>ng
Ov/HNҴ
2NS_Psl5+цCcmAfxcg L;q
{:1~O>8z\;:-:<;P ӵ