已知抛物线C:y^2=8x与点M(-2,2),过C的焦点且斜率为K的直线交于A,B两点,若向量MA与向量MB的内积=0,则K=求详解 前边我会 不过最后 如何把式子 化为K^2-4K+4=0 答案上写的这个式子 然后求出K=2 我最后
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:12:54
xn@_K[ZUdxvkB(!)IԦ%F
(iUÏgU_w%QYt39;]ʰ-r7v^lyuVPca
xmE'ݠճ_ ހz,Qw
>])d+ g=>bN/Oj0
o˙y_n2
6űly]wvp"8fu$~}_8mzUWkbX@@h~>O/{xW ,t-JKvJ@jo?Clp#QP9a[:kQ&7^2T;5 ѻAV
T64Sm0gbF[P:pBXi!{?2̶S6dY0.0qن lgV BX7#w ժby';81PrDBZ:bMD*xI8 K-ƌzԌpSRLG2S9+Hƌ(KJS|Tezf(y_ۻ
点M(4,0)以点M为圆心、2为半径的圆与x轴交与点A,B,已知抛物线y=1/6x^2+bx+c过点A和B,与y轴交与点C点Q(8,m)在抛物线y=1/6x^2+bx+c上,点P为此抛物线对称轴上的一个动点,求PQ+PB的最小值CE是过点C的
已知抛物线y=ax^2+bx+c与x轴交于点A(-2,0),B(8,0),与y轴交于点C(0,-4),直线y=x+m与抛物线交与点D,E(D在E左侧),与抛物线的对称轴交于F(1)求抛物线的解析式(2)当m=2时,求角DCF的大小(3)若在直线y=x+m下
已知抛物线y=ax²+bx+c与y轴交于点(0,8),且与直线y=x-2交于两点,A(2,n)B(m,3)求抛物线的解析
已知抛物线y=(m-1)x+(m-2)x-1如果抛物线与x轴相交于a,b两点,与y轴相交于c点,且三角形abc的面积为2,求m的值
如图,已知抛物线的方程C1:y=- (x+2)(x-m)(m>0)与x 轴相交于 点B、C,与y 轴相交于点E如图,已知抛物线的方程C1:y=- (x+2)(x-m)(m>0)与x 轴相交于点B、C,与y 轴相交于点E,且点B 在点C 的左侧.(1)若抛物线C1
一道数学题,关于抛物线已知P为抛物线C:y²=8x上一个动点,Q为圆M:x²+y²+2x-8y+16=0上一个动点,那么当点P到点Q的距离与点P到抛物线C准线的距离之和取得最小值时,P点坐标为多少
如图已知抛物线的方程y=-1/m(x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左如图,已知抛物线的方程y=-1/m(x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B
已知:抛物线y=-x2+mx+2m2(m>0)与x轴交于A、B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A、B
已知抛物线y=x^2+mx-1/4m^2(m>0)与x轴交于AB两点求抛物线与y轴交于点C,若∠ACB=90度,求m的值
如图,已知抛物线的方程C1:y=- 1 / m (x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E如图,已知抛物线的方程C1:y=- 1/m(x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在
如图,已知抛物线的方程C1:y=- 1 / m (x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E如图,已知抛物线的方程C1:y=- 1/m(x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在
已知抛物线y=ax2+2x+c与x轴的交点都在原点的右侧,则点M(a,c)在第几象限?理由?
已知抛物线y=ax²+2x+c与x轴交点都在原点的右侧,则点M(a,c)在第__象限
已知抛物线y=x平方-2x+m与x轴交于点A(x1,0)B(x2,0) (X2>X1) 若抛物线y=ax平方+bx+m与抛物线y=x平方-2x+m已知抛物线y=x平方-2x+m与x轴交于点A(x1,0)B(x2,0) (X2>X1)若抛物线y=ax平方+bx+m与抛物线y=x平方-2x+m关
已知抛物线y^2=4x,过点M(0,2)的直线l与抛物线交与A,B两点,且直线l与x轴交与点C
初三二次函数 已知抛物线y=-x²+4x-3的顶点为M,直线y=-2x-9与y轴交于C点,与直线MO交于D点已知抛物线y=-x²+4x-3的顶点为M,直线y=-2x-9与y轴交于C点,与直线MO交于D点,现将抛物线的顶点在直线OD上
如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交与点A、B.已知抛物线y=1/6x²+bx+c上如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交与点A、B.已知抛物线y=1/6x²+bx+c过点A和点B,与y轴交
二次函数:如图所示,已知抛物线与x轴相交于A(m,0)如图所示,已知抛物线与x轴相交于A(m,0)、B(n,0)两点,与y轴相交于C(0,3),点p是抛物线的顶点,若m-n=-2,mn=3,求(1)抛物线的解析式及点p