正三棱锥S-ABC中,BC=2,SB=√3,D,E分别是棱SA,SB上中点,Q为边AB的中点,SQ⊥CDE,求△CDE面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 18:48:30
xRN@Je!Lu'70D%1CԨH41FMŊ_L[ٸu7s1:;`Ebq},d^=> H0h/  d24IOSl7xͮǾ7)^œb],DH^NՓ6QvIR {n \O'3)2g+)eS9]ZlaSQ$УzBP^5v%!7,Йkg n } }Iʦz: uXf4EKe-/_-زRn{@
正三棱锥S-ABC中,BC=2,SB=√3,D,E分别是棱SA,SB上中点,Q为边AB的中点,SQ⊥CDE,求△CDE面积 在正三棱锥S-ABC中,M,N分别是SC,SB的中点,且MN⊥AM,若侧棱SA=2√3,则正三棱锥S-ABC外接球的表面积为?求详解. 在正三棱锥S-ABC中,SA=SB=SC=AB=BC=AC(1)求证SA⊥BC(2)求二面角S-BC-A的余弦值 三棱锥s-abc中,ab=ac,sb=sc求证bc垂直sa 正三棱锥S-ABC中,BC=2,SB=根号3,D,E分别是棱SA,SB上的点,Q为边AB中点,SQ垂直平面CDE,则三角形CDE的面积为 三棱锥S-ABC中,SA⊥底面ABC,SA=AB,AF⊥SC,E为SB的中点,SB=2a,SC⊥BC,求三棱锥V S-AEF的最大值 如图,在正三棱锥S-ABC中,M、N分别为棱SC、BC的中点,并且MN⊥AM,若侧棱长SA=,则正三棱锥S-ABC的外接球的表面积为?(36π)我知道,SB⊥平面SAC,则SA⊥SB,SB⊥SC,那为什么SA⊥SC呢?只有三条棱两两垂直才 高中一道几何题三棱锥S-ABC中,AB⊥BC,D、E分别为AC、BC的中点,SA=SB=SC 求:一 求证BC⊥平面SDE 二:若AB=BC=2,SB=4,求三棱锥S—ABC的体积 (因为发不上图所以只能描述了:S点在三棱锥顶点,底部上的 正三棱锥S-ABC中,M是SC的中点,SB⊥AM,若侧棱SA=2 根号3,则此正三棱锥的外接球的体积为 在三棱锥S-ABC中,SA=SB=AB=BC=CA=2,则三棱锥S-ABC的体积最大值为[ ](A)3,(B)1,(C)根号3,(D)根号2 如图,三棱锥S-ABC中,棱SA,SB,SC两量垂直,且SA=SC=SB,则二面角A-BC-S大小的正切值 在正三棱锥S-ABC中,求证SA⊥ BC 在正三棱锥s-abc中 ,证SA垂直BC 已知三角锥s-abc中,sa=bc=2,ab=ac=sb=sc=3,则该三棱锥的体积是? 正三棱锥S-ABC中,SA=SB=SC=6,∠ASB=∠BSC=∠CSA=90°,则正三棱锥的体积V S-ABC= 三棱锥S-ABC中,SA=SB=SC=AB=AC=2,求三棱锥S-ABC体积的最大值 三棱锥S-ABC中,SA垂直底面ABC,AB=5,BC=13,SA=AC=12,求二面角(1)S-BC-A (2)A-SC-B (3)A-SB-C 三棱锥S-ABC中,SA垂直面ABC,AB垂直BC,SA=2 AB=BC=1,则三棱锥S-ABC外接球的表面积=?