设a为正常数,x0>0,Xn+1=1/2(Xn+a/Xn),是否收敛,极值为多少?利用单调有界定理

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 05:14:03
xJ@_)I_cV˜t2hFI^A>Lҷdqsz0 d9G0P1$&}7 1wG}P\@R0܎yҽ}ܐpafBm6K[0̤ɛP/9JRBuiBYH&fei9&ith$8~ o zxX`~Z:h TMz!
设a为正常数,x0>0,Xn+1=1/2(Xn+a/Xn),是否收敛,极值为多少?利用单调有界定理 设数列Xn有下列定义:Xn=1/2Xn-1+1/(2Xn-1),(n=1,2,……)其中X0为大于零的常数,求n趋于无穷时,Xn的极限上面的是Xn-1,即比Xn小的一项,不是两倍的Xn减一. 设a>0,{Xn}满足X0>0,Xn+1=1/2(Xn+a/Xn) ,n+1是下标,n=0,1,2...,证明:{Xn}收敛,求(n趋向无穷) lim Xn 高数题 已知数列Xn,n从0到无穷.满足Xn=1/2(Xn-1+a/Xn-1) n-1是下标,n=1,2,3..其中a为正常数,X0为任意正数,试证limXn存在(n趋于无穷),并求其值 设数列{xn}满足xn+1=xn/2+1/xn,X0>0,n=0,1,2,3,...证明数列{xn}极限存在并求出其极限 设x0=1,x(n+1)=(xn+2)/(xn+1)(n>=0),证明数列{xn}收敛. 已知首项为x1的数列(xn)满足xn+1=(a*xn)/(xn +1) (a 为常数). 设﹛Xn﹜满足-1<X0<0,Xn+1=Xn∧2+2Xn(n=0,1,2,…),证明﹛Xn﹜收敛,并求极限 设a>0,{Xn}满足X0>0,Xn+1=1/2(Xn+a/Xn) ,n+1是下标,n=0,1,2...,证明:{Xn}收敛,求(n趋向无穷) lim Xn答案提示里要用归结原则(先把数列变成函数)和洛必达法则 高数题(极限存在准则,两个重要极限)设数列{xn}由下式给出:X0>0,Xn+1=1/2(Xn+ 1/Xn) (n=1,2,.)证明lim Xn 存在,求其值 已知首项为x1的数列(xn)满足xn+1=(a*xn)/(xn +1) (a 为常数).若对任意的x1不等于1 ,有xn+2=xn 对任意的n属于N(正实数)都成立,求a的值;当a确定后,数列{xn}由其首项x1确定.当a=2,通过对数列{xn 设X0=7,X1=3,3Xn=2Xn-1+Xn-2,证明数列Xn收敛,并求极限 已知数列xn满足xn-xn^2=sin(xn-1/n),证明xn的趋向正无穷的极限为0 设a为实常数,函数f(x)=-x^3+ax^2-4.(2)若存在x0属于(0,正无穷),使f(x0)>0,求a的取值范围 设a为实常数,函数f(x)=-x^3+ax^2-4.若存在x0属于(0,正无穷),使f(x0)>0,求a的取值范围 设x1=a>0,x2=b>0,xn+2=根号下(xn+1)(xn) 求limn→∞ xn 其设x1=a>0,x2=b>0,xn+2=根号下(xn+1)(xn) 求limn→∞ xn 其中n+1 n+2均为下标 1.设f(x)=x/2+1/x.对任意的x0>0,定义x1=f(x0),x2=f(x1),.,xn=f(xn−1)试证 lim xn =√2 n→∞. 设函数fx=3ax-2a+1为常数,若存在x0属于(0,1),使得fx0=0,则实数a取值__