如图在直角梯形ABCD,中AD=2,BC=4如图1将BC绕点C逆时针旋转转90 得CE连接DE阴影部分面积是图自己画下就是△DCE的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 19:00:38
x}[S[I_'bLjK`:ݰ=0/u:釪7q@H`s5` MH"F_̝{K=pH3s\kew+Wbu[9ip7E}3H7*T_~"ýJg}ߨTSJSsFu@]?z'}D_7=М]N>ziw{-]8lj^%-$۱';W)z+sVW$DiŌF%D:!^deoƐ"&; ̺9z&GCD$8@tSç.ݥ;EiTy9 ]sKAc1#wuebvZ'3MӢxN|(,Uۆ/X\*MKR#.\Ӯ$+ 0 3~YIۨ_&@$KtJ~8 hP=]m2aQ piAfۊݥډ=~[;C45|k56]+5jgtGOV/*;펌S1}L{B/&k "ȱG1 .7 +[O!A܈ S6jE 4 m^O@FOJQRY,ZsjLL%"u0:ɰmdSQ^'qqB\H ~+V#]fA ;ZbA2/ e !. $6&HV RhBSq2bbr !|`dyMknyx~ jdnџmi#+7:>$ӾȤi LtD\kqO3¸[ʻo݅ {=.Qoou ȉ,5X%A@I c?$@OL +'jyxƨ|PhNm3n1n*"툋c,̿f3&NzqYB$n  =YRĴʝe`P{4L|y{DH:l‚|ܫA$2[hz 5eu`͌{sGXyC~$̢ٕ-4m2 4*'R@6.X`2JM@l=of7 0*hfzW:Q] h^@pߌW-Y/NZu!‘v.DsBZtT7S_!Y| < ̥o|p"{Z1U@J3 3^FL 7B>N) d\+;$iLCFh\#3'm;̞DWIfhr-khyQY_<XwT6T:2K7?eRv ַvh 6.rW:wr{p mM4)z%ΰzZoȒv˪Cs=&iF[a %pNߋWb3g.}C5 ;}[cS]7+#z9daqØ&!-3*m~v AffI{52[E,yݠˈX튴G. q4wq5Wb”m\J%2jdg@x;"[ۨ '<8Rt`Ejo hԍStz5R<]@BfXQeO(C#ηE%+`@dZ],;0@k״x" 2ߨm7׈ iMx_ͼ'%5JXcaU=?=;։1Vb}bmR4 ^L"V0Vs,1>7O㽹=cYې垐PuQxE b}!uG (ɛvD5о,3ps.bbC-Rgw܀- f. ̌4g[sO73^Ke4bs)Jg}9&bwQBP016nLx5(coW+^n Ϣκ'Lfd MOg~@$z"juo fm-I0w]s' ܜD_Ԙ[ d@6 [4zJ̩m/PP$mAcNC9.NTZ4|Yo^xX0δ n}L7Lzpez#x!E}ُىR`G؈xӡn4w>B++2gL~cD#6vLt!.>Xآ<e]j"B6an"ڷnmXIpairSjtiNHS<(9Jdk Y&[`.M.WJuޘ`lySw$_[=H"uP8XYiv=p bNؔtڕ\D,j{KnpZ&>⋳$9'`Cʘ!Y!Xɥ݌Fz=〲am@Իm1JRD|iKEua$C:L'p5G5K{ͫ+樀@b 1b1 q؞)1wۓvCp@Ⱟw' ;-P1ʯ!%-/qHu\LX2J(!=V1dyFl |"F^MuKsQiyK}z!iҲөD%b]1>֕y]P+'8 %'hn+*)A$>ysmd)fb:LjoC5+SXv A=JDF!̔9 r se Jl2#3d>Ȱ IRѰڂ42~p8| alX@w; Ŕ vPUI3G ٕ![ū$?XJ@\bw+uXHCٙl*dOx#Pb%od&t󠤼)i*xAl.+;,2T1LWEo-CO7(KA+&&g[752,r*sWK#loTgʡ FÇgY~;waѢ I=!DW>rUj-J*(R܍ZxUU#fq'Hʑ ;^ZQ1Z$Ek؀ {݈1,ZQfhZn$H2#v wtSaDW:)9nMy h4 Xr2R" ,F XdUj )!V$;.2<:rl+^-[=7뙠7De^ L{c0@T; Y$܎/J{0[LLnДʌX/qa3Fq#7OXG I|I>>!Q7t wq]7v8?gCcmXykt{ٞtVZ Ӕ`z9$Js2IƎM_(^~5ʳpRY/eTڛ_JW ETEuP29@Zq*dq>A%N,iN2+%f g]i] ]vn\!U3Ʊ='ύ'D+! R<{X?%bª<ܻi) ooq^{H!{X~oWY$5dv!obcދ]3ä2F|HQXbo|:*)*6D<[]p3 "WEj6f쬲2e $[Қ$#ߝ-դvc'"dUwS`bDQȶ%KZ|&w$'h?BEeSH!){  7ԢH1CѼ\KH}2~I))YH.7#̀u2@e$|20YQͩAkiRzQk:! Ct" HTL")$ /ldԵz'}zH$Y:Yຢ୎9"vECb|A%aρ`,JSwnjL)>3 OLޮ $BJp,K_AY*ƧibҔOetȢr8伴H5AYy7Lq0"?`fW|il|܅}H@F%XqO͏(7 q:A"/ 6mTLYkK';XM5J]ZwW[5Z \l#beߝo+}ƦއҸ1ڲqvh?[2⍬b^6بZD" Eswe b㍱BtY,|LנhͱM$4/[$LC[}Qg?Ec3DhY>To9r&B+W"]QURGOuQĚ#|Cżݙ0a̭W>y;e߶V&BT\e-P ik759m$a1=[Fc;cfh|k%/$7Ky{NR=q[1,WT9tr o Dt,M71)'L¦"%_ WSS8턘r~BW 0\%kݒ3y^L?1Ɍ5Xj*9'?I>'شCqxNYrxJ'Jڰ^fBl=&ᇏBPh|{vpl!?^sP*1dZ>,#Y ehɖO8ꐈ"tNbLP"v>&Ƚ!{SlaX`"%},fsd90(}l_T~6+93äyD.!- ۅǍ.XuQ7w\Bjs!yl.@M"lԙ'13b8<q ?ջSE{(길\rsZ+筹)㕷>11.&`o8cVme6M]QE`[orh' ?ScXwo] 6H/ǶM/]ߨ$P;y+%y~Nllfrƞ!κ' Vij͓4YŒ6OG8SK9W%d…h7 t0LCT % 葁EDV.w*Oy$^dgጿ,p~e5yBPhюK[4ٸB|nkVK6'? =1}4Oy?gu"Âa:!y8ح&Gk4Mac [A߶0:AcQY G#}"Pܞfө$M&,e1':}V8gyc{:м2@I( +,Shr:>@HƭI ġѲlN!|j#[=ɲd0aY&e ̀& OhcB+%6$IMQߩP u20Q>|>Di 3c?#ԫ2zxxJFoe-kۣ_ٽdt,u 07‹%4衒vF0;2̜HCLSP! G?eA޹ɞa8X^' w.t''sd ]34h%.Y?̀]#dtfB/7yvZkI%=ؼal$}Z{-sϢNx;䡼ӏ[,OhZS5p/ J?FS!1q9O⏝H;073i:~Ʀ~LYgBzC*O#rF2y/fOi8wFEf@ԫl7pXZ)=D~D\ڷL1/dlaѱY%D{h^ h!)b>'4z23`8x5KYig@&*J98G <,F+|mW%_P hFiP$Π<J5Z\ ҔiHL62XH-(#vMo4.1<8bo*VȤa-OΠ™ mi,y_Ep$3Olϥ[//Z2C?ŭ'O.E >l z#lIk]@6xc(%84btJ@hS-+9,r;Mr*9f);M+U)茈HN1̴׷"MRɋ⹊PC+zӫ#EM_RwzM_VCl?uYaG "x]!>K V3-XMuNWx١OUgU\r7# x<nC9? {: ᲇD9, nhb/ΎKxgX&7h _t>ӗQ+Z7";}lGso==Q2,p/)",s?0iFF2ʿ>e6K3 Q BGV+dguPY7)f ^ODED*rV_P[a}EM>&3k%5e΂ϯp|,MUu\6cYTPO>L},ϾB1=zY9$#>s]Ip`T딱PP)-Vu(\D5_ q?N86^ݵB33N*;qꀤ|N}iR}HZu.kaTQgtoh_V7(( 'NoN#ϸ L杜#)Jk +U7ߘ.) aLW2؄%d]U4:΁f>/0ۥ aUB-) W0nĭj*t񤩊5~}o! -X27q$a`C'?H 8u׭>!F9B6_8O٫U;\+XWoYZ_HϘz٥9/ߩ` iTOiq<Mݚz9Q塻:>AeY25?f9ao`tMXqHxeꈙQs{UO7L\,!6W+cZ5|vl|ȱΌٌ&d38Y̮v2'#Pdʶ.~3$Is$o)yj=m&LY"64iyدdnCl2pl(85|Ƨ\^7="e{J$= . aT*JkAq݈NjWSI\N?ϑ"3:(V.Pdsd(Vn]/^mR9gkכ%{譼< RRmQ~OU #P*kbg{eZKJ %3"YEDxݜ;"VmH]V".hgNB^ՊRۿף*=C7iqrF86(5TA#4|Ŷ)< &$/^Z Ÿyx8ɓ\I@%)|ӏ &䀼KV@5sn +Wࡵho P9ZKu@vUj5$y5,HX)c\u?$Vҧߑ?_k~qxGMFomg ڗh~jnNEKS]?/Ts.oT߈hQG)jk~;($nZ#gV0feki8rp%ƶI=oKLE&RSv^)nٵ
在直角梯形ABCD中,AD//BC, 在直角梯形ABCD中,AD//BC, 如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE垂直BC 如图,在直角梯形ABCD中AD∥BC∠ABC=90° 如图,在低面为直角梯形的四棱锥P-ABCD中,AD//BC, 如图,直角梯形ABCD中,AD∥BC,AB⊥BC,△BCD是等边三角形,且BC=2厘米,求梯形ABCD的面积 如图,在直角梯形ABCD中AD//BC,∠A=90°,对角线BD平分∠ADC若AD=2,AB=4求直角梯形ABCD的面积 如图,在直角梯形abcd中,ab//cd,ad⊥cd,ab=1cm,ad=2cm,cd=4cm,则bc= 如图,在梯形ABCD中AD平行BC,AD 如图,在直角梯形ABCD中,AD//BC,AB⊥BC,E是CD的中点,且AB=AD+BC,请问ABE是何种三角形,证明! 如图,在梯形ABCD中,AD//BC,AD=2,BC=4,AB=2,CD=2倍的根号下2.这个梯形是直角梯形吗?说说你的理由. 如图,在直角梯形ABCD中,AD//BC,点E是边CD的中点,若AB=AD+BC,BE=5/2,则梯形ABCD的面积为(解答题) 如图在直角梯形ABCD中AB⊥BC AD=DC=14 角D=120°;求梯形ABCD的面积 如图,在四棱柱P-ABCD中,底面ABCD为直角梯形,角BAD=90度,AD//BC.AB=BC=a.AD=2a.PA垂直平面ABCD.PD与...如图,在四棱柱P-ABCD中,底面ABCD为直角梯形,角BAD=90度,AD//BC.AB=BC=a.AD=2a.PA垂直平面ABCD.PD与平面ABCD成30角 已知:如图,直角梯形ABCD中,AD平行BC,AB垂直BC,全等三角形BCD是等边三角形,且BC=2厘米,求AD的长 如图,在直角梯形ABCD中,AD平行BC,角B=90°,AD=13,BC=16,CD=5, 如图,在梯形ABCD中,AD//BC,AD=a,BC=b(a 已知在等腰梯形ABCD中,AD平行于BC,AD+BC=18 求梯形ABCD的高已知在等腰梯形ABCD中,AD平行于BC,AD+BC=18 求梯形ABCD的高 如图