设函数f0(x)=|x|,f1(x)=|f0(x)-1|求函数y=f1(x)的图像与x轴所围成的封闭部分图形的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 07:13:08
xŒoPd.HmK{kZ^?0-U7 l-QSpdFTB?O ^>Ώ9s9 sQc+܂%R
设函数f0(x)=绝对值x,f1(x)=绝对值f0(x)-1,f2(x)=绝对值f1(x)-2,求函数y=f2(x)的图像与x轴所围成的封闭图形的面积. 设f0(x)=cosx,f1(x)f0'(x),f2(x)=f1'(x),...,fn+1(x)=fn'(x),n属于正整数,则f2008 设函数f0(x)=|x|,f1(x)=|f0(x)-1|求函数y=f1(x)的图像与x轴所围成的封闭部分图形的面积 设函数f0(x)=|x|,f1(x)=|f0(x)-1|,求函数y=f1(x)的图像与x轴所围成的封闭部分图形的面积. f0(x)=xe^x,f1(x)=f0'(x),f2(x)=f1'(x),.,fn(x)=f'n-1(x)(n∈N^*),f2012(0)=? 设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2013(x)=( )f0(x)=sinxf1(x)=f0'(x)=cosxf2(x)=f1'(x)=-sinxf3(x)=f2'(x)=-cosxf4(x)=f3'(x)=sinx.可以看出,以4为周期进行循环2013/4=503×4+1所以f2013(x) 设函数 f0(x)=1-x²,f1(x)=| f0(x)-1/2 |,fn(x)=| fn-1(x)-1/2n |,(n≥1,n∈N)则方程 f1(x)=1/3有_个实数根,方程 fn(x)=(1/3)n有_个实数根 1.设函数f0(x)=|x|,f1(x)=|f0(x)-1|,求函数y=f1(x)的图像与x轴所围成的封闭部分图形的面积2.若函数y=a|x-b|+2,当x大于等于0时,y随着x增大而增大,求实数a,b的取值范围3.设关于方程|(x-1)(x-3)|=mx有4个不同的 设函数f0(x)=(1/2)^|x|,f1(x)=|f0(x)-1/2|,fn(x)=|fn-1(x)-(1/2)^n|,n大于等于1,n为自然数则方程fn(x)=(1/n+2)^n有几个实数根 若函数fx=x+bx+c对任意实数x,都有f(1-x)=f(1+x),则f1.f0.f3的大小关系 设函数f x 是定义在r上的奇函数且f(x+y)=fx+fy,f0.5=1,求f0及f1的值.求证函数y=fx是奇函数.如果f4x+f2-x小于2,求x的取值范围第一题没说清楚啊 2014年江苏高考数学卷第26题怎么做才好?真的很难啊,不愧是压轴题.已知函数f0(x)=sinx/x,(x>0),设fn(已知函数f0(x)=sinx/x,(x>0),设fn(x)为fn-1(x)的导数,n属于N *,(1)求2f1(π/2)+(π/2)f2(π/2)的值;(2)证明:对 二次函数fx=ax^2+bx+c满足f(1+x)=f(1-x)且f0=3,f1=2,函数的解析试是 设a,b为常数,M={f(x)|acosx+bsinx}设a,b为常数,M={f(x)/f(x)=acosx+bsinx};F:把平面上任意一点(a,b)映射为函数acosx+bsinx.1.证明:不存在两个不同点对应于同一个函数2.证明:当f0(x)∈M时,f1(x 设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2005(x)=( ) 已知两次函数fx=x2+bx+c,且f0=-3,f1=4.求f(x)解析试 设函数f1(x)=x^1/2,f2(x)=x^-1,f3(x)=x^2,则f3(f2(f1(2011)))=? 设函数f1(x)=x^1/2,f2(x)=x^-1,f3(x)=x^2,则f3(f2(f1(2007)))=?