在三棱锥P-ABC中,△PAC和△PBC是边长为√2的等边三角形,AB=2,O,D分别是AB,PB的中点1)求证:平面PAB⊥平面ABC(2)求三棱锥P-ABC的体积(3)求证;OD平行于面PAC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 14:30:49
xSMj@JPlWEH^$03@HBk!?%V8 qF^ }3#94B-{{S0/^#L}2D~]0h۰E㽸 :>2vlָ{  C![=k2Vޜ ^1G۾>lC,p Z\1v7izzUSHid(絨dV˥&PF<<@^Ք_Jeaؑ hg2gx"|tzZ\Z~Ű>8(9bE;K˴ 0ҵ{uWDLqӝD*9xA汔LRhDȬpےcƞak@Rc>}4= `#(=tfv"QXyŗ~=/fr M .WRZ3Zd('20Š0̴ؙ??w|r}U^'V
三棱锥P-ABC中,PA⊥平面PBC,平面PAC⊥平面PBC,问:△ABC是否为直角三角形 在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°(1)证明AB⊥PC(2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P-ABC体积 在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.(1)证明AB⊥PC (2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P-ABC体积 如图在三棱锥P-ABC中,三角形PAB是等边三角形,角PAC=角PBC=90度.(1)证:AB垂直PC (2)若PC=4,且平面PAC垂直平面PBC,求三棱锥P-ABC体积解:(1)证明:因为△PAB是等边三角形,∠PAC=∠PBC=90°,所以Rt△PBC≌R 在三棱锥P-ABCD中,已知△ABC是等腰直角三角形,角ABC=90°,△PAC是直角三角形,角PAC=90°,平面PAC⊥平面ABC.求证:平面PAB⊥平面PBC 如图,在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°请证明:AB⊥PC 在三棱锥P-ABC中,△PAB是等边三角形,角PAC=角PBC=90°(1)证明AB⊥PC(2)若PC=4,且平面PAC且平面PAC⊥平面PBC,求三棱锥P-ABC的体积 在三棱锥P-ABC中,△PAC和△PBC是边长为√2的等边三角形,AB=2,O,D分别是AB,PB的中点1)求证:平面PAB⊥平面ABC(2)求三棱锥P-ABC的体积(3)求证;OD平行于面PAC 如图,在三棱锥P-ABC中,以知△ABC是等腰直角三角形,∠ABC=90度,△PAC是直角三角形,∠PAC=90度,∠ACP=30度,平面PAC⊥平面PBC.(1)求证:平面PAB⊥平面PBC;(2)若PC=2,求△PBC的面积 在三棱锥P-ABC中,三角形PAC和三角形PBC都是边长为根号2的等边三角形AB=2,OD分别是AB,PB的中点,求证平面PAB垂直平面ABC还有求三棱锥A-PBC的体积 如图在三棱锥P-ABC中,三角形PAB是等边三角形,角PAC=角PBC=90度.(1)证:AB垂直PC (2)若PC=4,且平面PAC垂直平面PBC,求三棱锥P-ABC体积 在三棱锥P-ABC中,三角形PAB是等边三角形,∠PAC=∠PBC=90*(1)证明:AB⊥PC(2)若PC=4,且平面PAC垂直平面PBC,求三棱锥P-ABC的体积. 在三棱锥P-ABC中,△PAC和△PBC是边长为√2的等边三角形,AB=2,O,D分别是AB,PB的中点(1)求证:平面PAB⊥平面ABC(2)求三棱锥P-ABC的体积 在三棱锥中,△PAC和△PBC是边长为根号2的等边三角形,A=2,O,D分别是AB,PB的中线,求OD平行平面PAC;平面PAB求OD平行平面PAC;平面PAB垂直平面ABC;求三棱锥的体积 三棱锥P-ABC中,M,N分别是△ABC和△PBC的重心,求证A,M,N,P必在同一平面 在三棱锥P-ABC中,面PAB垂直于面ABC,AB垂直于BC,AP垂直于PB,求证面PAC垂直于面PBC 在三棱锥P-ABC中,点D.E.F分别是🔼PAB.🔼PBC.🔼PAC的重心.求证:平面DEF//平面ABC 如图1,P为△ABC内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就�如图1,P为△ABC内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么