设u=xy( x> 0,x≠1),则du=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 20:52:26
x){n_mEBNţ:O;f$/!lLЮH/.H̳s)ZtӉ :V=
设u=xy( x> 0,x≠1),则du=
设u=xy+x的平方,求u在点(1,0)处得全微分du| du|这个的右下角有个(1,0)
设u={cos(x^2)}/y +(xy)^(y/x) 求du
设u=f(x,y)=∫(0到xy)e^(-t^2)dt 求du答案是du=e^(-x^2*y^2)(ydx+xdy)
设u=cosh(xy)+cos(xy),则du=
设u=(e^xy)(cos(x+y^2)),求du
设f(x)=sinx/x,u(x)=x^2 ,则df/du=?
设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程e^xy-y=0和e^z-xz=0所确定求du/dx,求详解,答案是du/dx=f'x+y2/1-xy*f'y+z/xz-x*f'z
设f(x)=∫(0,1-x) e^[u(2-u)]du,求极限 ∫(0,1)f(x)dx
设f(x)=x+∫(0,x)f(u)du ,f(x)是可微函数,求f(x)
复合函数求导公式是如何推导出来的?设y=f(u),u=g(x)则f'(u)= ( f(u+du) - f(u) ) / du du = dg(x) = g'(x)dx则原式= f'(u)= ( f(u+du) - f(u) ) / g'(x)dx f'(u)g'(x) = ( f(u+du) - f(u) ) /dx =
函数f(x)在(0,+∞)连续,f(1)=5/2,对所有x,t∈(0,+∞),满足∫(1,x)f(u)du=t∫(1,x)f(u)du+x∫(1,t)f(u)du设函数f(x)在(0,+∞)连续,f(1)=5/2,且对所有x,t∈(0,+∞),满足∫(1,x)f(u)du=t∫(1,x)f(u)du+x∫(1,t)f(u)du,求f(x).我对右
du/[u(u-1)]=dx/x详解
设函数f(x)连续,且满足f(x)=e^x+∫(0.x)uf(u)du-x∫(0.x)f(u)du,求f(x)
设F(x)=积分0~x (x-u)f(u)du,其中f(x)连续,求F(x)的导数
x(x+1)du/dx=u^2;u(1)=1 求u(x)=?
设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程e^xy-y=0和e^z-xz=0所确定,求du/dx
设y=(x^2),求dy/dx令y=sinu,u=x^2,则dy/du乘以du/dx=sinu/u乘以x^2/x为什么等于cosu乘以2x