A是n维欧氏空间的一个反对称线性变换,为什么这个线性变换在标准正交基下的实反对称矩阵A特征值只能是虚数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:35:19
x͑ONP/4MBҠ(b. m@mMI/Wp&X<7$MV7Yo.
,
ߐP',3`|HD'3=x\Y}NW$xO^Un)
z
֚w~;c:
xT&Kz-c-:(`2T{l|,ɷP{1س2}vHjԠ}ŶK{?,*s}[Oȯx.6ZUT(.K)nO
A是n维欧氏空间的一个反对称线性变换,为什么这个线性变换在标准正交基下的实反对称矩阵A特征值只能是虚数
设A是n维欧式空间V的一个线性变换,证明:如果A既是正交变换又是对称变换,那么A^2=E是单位变换
高等代数反对称双线性函数的这个结论怎么得来 的 有一个定理是:设f(α,β)为n维线性空间V反对称双线性函数的这个结论怎么得来 的 有一个定理是:设f(α,β)为n维线性空间V 上的反对称双线性
一个关于矩阵理论的证明题设V是n维线性空间.证明:V中任意线性变换必可表为一个可逆线性变换与一个幂等变换的乘积.
设A为n阶对称矩阵,B是n阶反对称矩阵,证明AB为反对称矩阵的充分必要条件是AB=BA
在V上定义线性变换T为T(x)=x-2(x,a)a,其中a是欧式空间V的一个单位向量设a是n维欧式空间V的一个单位向量,在V上定义线性变换T为T(x)=x-2(x,a)a,求:(1)证明T^2=Ev,Ev是V上的单位变换(2)在V中找出
一个域F上的n级矩阵能否直接看成域F上的n维向量空间Fn上的线性变换.另外,矩阵可看成线性变换的意思是不是:若给了一个Fn上的矩阵A,则A既是矩阵,又是Fn上的线性变换?
设n是正整数,V是数域P上的一个n维线性空间,W1.W2都是V的子空间,而且它们的维数和为n,证明:存在V的线性变换A,使A的值域是W1 ,核是W2
设A为数域P上的n维线性空间V的线性变换,且A^2=A证明:(1)V=A的核加A的值域为直和(2)如果B是V的线性变换,A的核与A的值域是B的不变子空间的充要条件是AB=BA
看看这个高等代数定理有问题没有?“设A是n维线性空间V的一个线性变换,A的矩阵可以在某一组基下为对角矩阵的充要条件为:A有n个线性无关的特征向量”,是说只有n个还是只要找到n个就行?
问刘老师,设a为线性空间V的一个线性变换,A为a在某组基下的矩阵λ1,L,λn是a的n个特征值,则λ1+L+λn=_________求过程,谢谢刘老师
对称矩阵与反对称矩阵证明问题证明:如果A是一个n*n的标量矩阵,A可以被写成A=S+K,此时S是对称矩阵而K是反对称矩阵证明:如果A是一个n*n的矩阵,A可以被写成A=S+K,此时S是对称矩阵而K是反
n阶矩阵的线性变换线性变换t(A)=A',A为n阶方阵,那么t的特征值怎么算呢?属于特征值1的特征子空间的维数和一组基怎么求呢?
A为n阶对称矩阵,B为n阶反对称矩阵,证明B^2是对称矩阵,火速!
高等代数 设A是n维向量空间 则A上的全体线性变换组成的向量空间的维数是多少?
设V是数域P上n维线性空间,t是V的一个线性变换,t的特征多项式为f(a).证明:f(a)在p上不可约的充要条件是V无关于t的非平凡不变子空间.
正交变换的证明题证明:A是n维欧式空间V的一个线性变换,若A在任一组标准正交基下矩阵是正交矩阵,那么A是正交变换.
设A是一个n元集合,问A上有多少个关系?这其中又有多少个关系是1.对称的?2.反对称的?3.非对称的?4.反自反的?5.自反的和对称的?6.既不是自反的也不是反自反的?应用离散数学 方景龙 王毅刚编著