已知数列bn,满足b1=1,b2=5,bn+1=5bn-6bn-1(n≥2),若数列an满足a1=1,an=bn(1/b1+1/b2+...+1/bn-1)(n≥2,n属于正整数)(1)求证:数列bn+1-2bn为等比数列,并求数列bn的通项公式.(2)求证:(1+(/a1))(1+(1/a2))...(1+(

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 07:36:59
xn@_Ų؞Ů tb $V@JmCU)BTU]J[@ ~;*!K*@b13ͯasRw/E8,Ly\mP[E9f~iZJX#a*⪍GްivShZ:8ꝯA{->G}|vlQW,&\MӣA}~ymUgtbt8߿^򝭽^ F[0liB _b Vna,Υt:MƯ统rr\ A Y 5E?wuZ+EJ{&N
有关数列的数学题.已知数列{bn}满足b1=1,b2=3,b(n+2)=3b(n+1)-2bn.求证数列{b(n+1)-bn}是等比数列,求{bn}的通项公式. 已知an=2n-1,数列{bn}满足:b1/2+b2/2^2+...+bn/2^n=an,求数列{bn}的前n项和Sn 数列{bn}满足b1=2,b2=5,b(n+2)=3b(n+1)-2bn.求证数列{b(n+1)-bn}是等比数列并求出{bn}的通项公式数列{bn}满足b1=2,b2=5,b(n+2)=3b(n+1)-2bn.(1)求证数列{b(n+1)-bn}是等比数列(2)求出{bn}的通项公式 已知数列bn,满足b1=1,b2=5,bn+1=5bn-6bn-1(n≥2),若数列an满足a1=1,an=bn(1/b1+1/b2+...+1/bn-1)(n≥2,n属于正整数)(1)求证:数列bn+1-2bn为等比数列,并求数列bn的通项公式.(2)求证:(1+(/a1))(1+(1/a2))...(1+( 已知数列{an},{bn}满足:a1=1/4,an+bn=1,b(n+1)=bn/(1-an²) 1)求b1,b2,b3的值已知数列{an},{bn}满足:a1=1/4,an+bn=1,b(n+1)=bn/(1-an²) 1)求b1,b2,b3的值 2)求证数列{1/(bn-1)}是 已知数列{bn}满足b1=-1,b(n+1)=bn+(2n-1),求bn 已知数列{bn}是等差数列,b1=1,b1+b2+...+b10=145 已知数列{an},{bn}满足an*bn=1,且an={1,n=1 ;n^2-1,n≥2},则b1+b2+...+b100= 已知数列{an},{bn}满足an*bn=1,且an={1,an=1 ;n^2-1,n≥2},则b1+b2+...+b100= 已知等差数列{an}中,a1=1,a7=4,数列{bn}是等比数列,b1=6,b2=a3.满足a26bna26 X bn 已知数列an,bn满足an*bn=1且an=n^2-1 则b1+b2+...b100=RT 已知数列{an}成等差,数列{bn}满足bn=(1/2)的an次方,且b1+b2+b3=21/8,b1*b2*b3=1/8(1)求证数列{bn}是等比数列,(2)求b1,b2,b3,(3)求数列{an}的通项公式 已知数列an满足an>0,Sn=[(an+1)/2]^2,bn=(-1)^n*Sn,求b1+b2+……+bn 数列{an}与{bn}满足an=1/n(b1+b2+…+bn)(n∈N).求证:数列{bn}为等差数列的充要条件是数列{an}为等差数列 若数列{bn}满足b1=1,b2=2,bn+2=3bn+1-2bn,求{bn}的通项公式. 数列{bn}满足loga(b(n+1))=1+loga(bn),且b1+b2+.+b100=100,则b101+b102+.+b200=?a为底 已知数列{bn}是等差数列,b1=1,b1+b2+...+b10=100.(1)求数列{bn}的通项公式bn; (2)设数列{an}=lg(1+1/b...已知数列{bn}是等差数列,b1=1,b1+b2+...+b10=100.(1)求数列{bn}的通项公式bn; (2)设数列{an}=lg(1+1/bn),记Sn为{an} 已知数列满足{bn}满足:b1=1,当n≥2时,bn=(2bn-1)/(bn-1+3),求bn其中,n-1都是b的下标已知数列{bn}满足:b1=1,当n≥2时,bn=(2bn-1)/(bn-1+3),求bn其中,n-1都是b的下标