已知a,b,c为正整数,a为质数,且满足a^2+b^2=c^2,求证a^2+2c-11.求证a^2+2c-1 2.若a+2b-c+70求a的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 05:44:47
xŒN@_ŵӡ̰`7!vo@Q1ԘB+,@-2vWL[ l wsn9ߟJu=n؆s9T 32U/H])RC>IYg l[4Ggȣ#.,{?-l֪EArQ/_zOj憁 djm[B3(h4 } M5dgaFvFIX>*c¡?(hțkߋ7,h,q0)8gƦpKM)J`;8#N<'r(/fѰw*{Į,q/݂_
已知a,b,c均为正整数,且满足a的平方,b的平方,c的平方,有a为质数,求证b,c必为一奇一偶 已知a,b,c均为正整数,且满足a^2+b^2=c^2,又a为质数,求证2(a+b+c)是完全平方数已知a,b,c均为正整数,且满足a^2+b^2=c^2,又a为质数,求证2(a+b+1)是完全平方数 已知a、b、c均为正整数,且满足a²+b²=c²,又a为质数证明(1)b与c两数必为一奇一偶(2)2(a+b+1)是完全平方数 已知a、b、c均为正整数,且满足a²+b²=c²,有a为质数.证明:(1)、b与c两数必为一奇一偶(2)2(a+b+1)是完全平方数 已知a,b,c为正整数,且满足a^2+b^2=c^2,又a为质数.求证:(1)b与c两数必为一奇一偶;(2)2(a+b+1)是完全平方式. 已知a,b,c均为正整数,且满足a^2+b^2=c^2,又a为质数,(1)证明,b与c两数必为一奇一偶(2)证明,2(a+b+1)是完全平方数 已知a、b、c均为正整数,且满足a的平方+b的平方=c的平方,又a为质数,求证:①a、b两数必为一奇一偶;②2(a+b+1)是完全平方数 已知a,b,c均为正整数,且满足a的平方加上b的平方等于c的平方,又因为a为质数,求证2(a+b+c)是完全平方 已知a,b,c均为正整数,且满足a的平方加上b的平方等于c的平方,又因为a为质数,求证2(a+b+1)是完全平方式 已知a,b,c均为正整数,且满足a^2+b^2=c^2,又a为质数,求证2(a+b+1)是完全平方数 已知a,b,c为正整数满足a 已知a,b,c均为正整数,且满足a的平方,b的平方,c的平方,有a为质数,求证2(a+b+1)是完全平方式已知a,b,c均为正整数,且满足a的平方加上b的平方等于c的平方,又因为a为质数,求证2(a+b+1)是完全平方式 已知a,b,c都是质数,且满足abc+a=85l,则a+b+c的值为 已知a、b、c为正整数,且a²+b²=c²,a为质数,试说明:2(a+b+1)是完全平方数 已知△ABC中,三边长a、b、c为正整数,且满足a>b>c,a 若正整数A,B,C满足A^2+B^2=C^2,A为质数,B,C为什么数 设a为质数,b,c为正整数,且满足9(2a+2b-c)的平方=509(4a+1022b-511c)且b-c=2,求a(b+c)的值 已知直角三角形的两直角边分别是为a、b,斜边长为c,且a、b、c为正整数,a为质数...已知直角三角形的两直角边分别是为a、b,斜边长为c,且a、b、c为正整数,a为质数,证明2(a+b+1)是完全平方数.