问一道关于线代的问题,急!设A是m*n实矩阵,B是m阶实方阵,证明:(1)齐次方程组AX=0与齐次方程组BAX=0同解的充要条件为r(A)=r(BA)(2)利用(1),证明:r(A)=r(ATA)=r(AAT)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 13:49:33
xRN@~ohPϕ}^5^%_1*
҂<;Wp%bԃO;773b"&/#KU3*|Yy-xdFh#n'ExP
˴}Ŝ4OҧP.W&{GN٥$Ṉh-לԘ0RlzbxW8qî/W#mT7]% st*+g>R7!Y
v@b]s-ӻYhA606+,#-lW0T?v9
qڠ6E;:p;]t(a{|1Ay8OaήU# Tq*<.{|)F6+dDA> *|ANa0Wer6+ݱz^!
;
问一道关于线代的问题,急!设A是m*n实矩阵,B是m阶实方阵,证明:(1)齐次方程组AX=0与齐次方程组BAX=0同解的充要条件为r(A)=r(BA)(2)利用(1),证明:r(A)=r(ATA)=r(AAT)
一道线代证明题设A为s*n矩阵,证明:存在一个非零的n*m矩阵B,使得AB=O的充要条件是r(A)
线代一个问题 设A是m*n矩阵,B是n*s矩阵,C,是m*s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C)
一道关于集合的问题.设全集为R,集合M={x|y=2x+1},N ={y|y=-x²},则:A:M是N的子集 B:N是M的子集 C:N=M D:M∩N={(﹣1,﹣1)}.为什么选B?原因是?
【急求解答】线代一个基本概念问题设A为m×n矩阵,B为n×m矩阵,A为m阶单位矩阵,若AB =E ,则(A) 秩r (A)= m ,秩r (B)= m .(B) 秩r (A)= m ,秩r (B)= n .(C) 秩r (A)= n ,秩r (B)= m .(D) 秩r (A)= n ,秩r (B) = n .又A为m×n
关于线性代数的一道选择题,遇到题目不知如何下手,设A是m×n矩阵,C是n阶可逆关于线性代数的一道选择题,遇到题目不知如何下手,设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r①
一个线代的证明题,什么思路?设A是n×m阶矩阵, B是m×n阶矩阵, 则这两个行列式相等:|En-AB|=|Em-BA|,E是单位矩阵.如何证明?
刘老师您好,请教您一个线代问题,就是方程组的系数矩阵Amn可能m大于n吗?因为有一道题说A的秩为r,b选项当r=n时Ax=b有唯一解是错的,我想来想去只有当m大于n时b是错的,可当m等于n时不就已经可
线代 若A是一个n*n的矩阵,用数学归纳法证明A^m是奇异矩阵,并且(A^m)^-1=(A^-1)^m
麻烦问一下 公式A(n,m)=n(n-1)(n-2)…(n-m+1) 中 (n-m+1) 是说明什么问题的啊?
问一道关于集合的高中数学题A=(3n+1)/6B=(3n-2)/6则A=B我想知道为什么A等于B?这是关于集合的问题~
线性方程组的一道问题证明:设A为m*n矩阵,AT是A的转置矩阵,则n元齐次线性方程组AX=O与ATAX=O同解
关于连续的一道高等数学题设函数F(X)在闭区间[a,b]上连续,c,d属于(a,b),m,n>0,证明:至少存在一点&属于[a,b],使得mF(c)+nF(d)=(m+n)F(&).请高手帮忙速回答很急存在一点&属于[a,b],使得mF(c)+nF(d)=(m+n)F(&)
线性代数中关于正定矩阵的一道题设A是n阶实对称矩阵,AB+B的转置乘A是正定矩阵,证明A可逆.
关于线代n阶矩阵相加减问题设A、B、C均为n阶矩阵,若B=E+AB,C=A+AC,则B-C= ?怎么算?
考研数学三:线性代数矩阵和秩的问题 设A是m*n矩阵,r(A)=m
线性代数问题:设A,B均是n阶正交阵,且|A|≠|B|,求|A+B|.设A,B均是n阶正交阵,且|A|≠|B|,求|A+B|.还有一道,设A为正交阵,试证明:A的实特征向量所对应的特征值的绝对值等于1.答出其中一道也行,
关于可逆矩阵的证明问题设P是n阶可逆矩阵,如果B=p^(-1)AP,证明:B^m=P^(-1)A^mP,这里m为任意整数.m是正整数