已知抛物线y^2=8x的准线与双曲线X^2/m-Y^2=1交于A、B两点,点F为抛物线的焦点,若三角形FAB为直角三角形,则双曲线的离心率为?答案是(√21)/2 可不可以帮我解释,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 15:29:31
xRNAKK֝h`׆%h "# ZԄ!SpP 2A;;c19w; p@էa/!ZH% y Ā%HHo =~"Acهuq3(HM[q|V^4K&Q9%Ymߐ\U8EjG V;DdZpJLA=-jEϳf̳@\Sº64a4!h@:N(*ҏmIU&!YyEU#κhG-.aVx۩y=\r)@`!J[~2l $vُ_}Fiw2^*
已知抛物线y^2=2px的准线与双曲线x^2-y^2=2的左准线重合,则抛物线的焦点坐标为 已知抛物线的顶点在原点,其准线经双曲线X^/A^ - Y^/B^=1的焦点,且准线与双曲线交于P(2,3)和Q(-2,3)求抛物线和双曲线答案 Y^=-8X X^-Y^/3=1 请求各位把具体步骤写下来 已知双曲线过点(3,-2),且与椭圆4X^2(平方)+9Y^2=36有相同焦点 1.求双曲线标准方程 2.求以双曲线右准线为准线的抛物线的标准方程 已知双曲线方程x^2/(9/4)-y^2/4=1,以它的焦点到准线间的距离为抛物线焦点与准线间的距离,标准方程是已知双曲线方程x^2/(9/4)-y^2/4=1,以它的焦点到准线间的距离为抛物线焦点与准线间的距离,以 已知抛物线的顶点在原点,它的准线经过双曲线x²/a²-y²/b²=1的焦点,且准线与双曲线...已知抛物线的顶点在原点,它的准线经过双曲线x²/a²-y²/b²=1的焦点,且准线与双曲 已知抛物线的顶点在原点,准线过双曲线x^2/a^2-y^2/b^2=1的一个焦点,且这条准线与抛物线的两个交点连线垂直,又抛物线与双曲线交于点(3/2,根号6),求抛物线与 双曲线方程 已知抛物线的顶点在原点,它的准线已知抛物线的顶点在原点,它的准线过双曲线x^2/a^2-y^2/b^2=1的一个焦点,双曲线的中心在原点又与抛物线交于点(3/2,√6),求抛物线和双曲线的方程 1.已知抛物线的顶点在原点,它的准线经过双曲线 x^2/a^2 - y^2/b^2 = 1 的焦点,且准线与双曲线交于P(2.3)和Q(2.-3)两点,求此抛物线和双曲线的方程.2.已知F1、F2为椭圆 x^2/9 + y^2/4 = 1 的两个焦点, 抛物线顶点在原点,准线经过双曲线X^/A^ - Y^/B^=1的一个焦点,且平行于Y轴,又抛物线与双曲线的一个交点AA(2分之3,根号6),求抛物线与双曲线方程 已知双曲线C1:x^2/a^2-y^2/b^2=1的左右焦点分别为F1、F2,抛物线C2的顶点在原点,它的准线与双曲线C1的左准线重合,若双曲线C1与抛物线C2的交点P满足PF2垂直F1F2,则双曲线C1的离心率为? 已知抛物线的顶点在双曲线X^2-Y^2/4=1上,准线为Y轴,则该抛物线的焦点的轨迹方程是? 已知双曲线离心率是2,准线方程为y=-2x,与准线相对应的焦点为F(1,0),则双曲线方程是 关于解析几何的问题抛物线的顶点在原点,它的准线过双曲线x^2/a^2-y^2/b^2=1 (a>0,b>0)的一个焦点 ,且与双曲线的实轴垂直.已知抛物线与双曲线的交点为(3/2,√6),求抛物线与双曲线的方程 抛物线顶点在原点,它的准线过双曲线x^2/a^2-y^2/b^2=1(a大于0,b大于0),的一个焦点,并与双曲线的实轴垂直已知抛物线与双曲线的交点为(3/2,√6)求抛物线与双曲线的方程 已知抛物线的顶点在原点,它的准线过双曲线x^2/a^2-y^2/b^2=1的焦点,且准线与双曲线交与(2,3)和(2,-3)两点,求此抛物线和双曲线! 圆锥曲线方程抛物线的顶点在原点,它的准线过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的一个焦点,并与双曲线的实轴垂直,已知抛物线与双曲线的交点为(3/2,根号6)(1)求抛物线及双曲线的方程. (2) 抛物线x^2=16y的准线与双曲线y^2/a^2-x^2/b^2=1(a>0,b>0)的一条渐近线交点的横坐标为-8,求双曲线的离心率 抛物线y^2=-12x的准线与双曲线x^2/9-y^2/3=1的两条渐近线所谓成的三角形面积等于?