空间向量综合题在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直底面ABCD,E、F、G分别是AB、PC、CD中点,|PA|=|AB|=|AD|=1.(底面ABCD,BC在前、AD在后)求PD与AC所成的角、求AP与平面PCD所成的角、求平面PAB
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 18:17:53
xTn@/ f
[/4`G $`Lwl^HQKVJ#=9s#a\s9Ɍ5!8"R'='9OX7hpgxaaw-$
bV{~/G_(188<9+6IBa݁BOS]Y`9)w驮^L@4*S%k?ح= @`x
C
yX{Ky#u퉕o/s0>ړ𰵹@${͞tp>gLқ2 `AqsԜF?t9KiIÀC)obh>NY iM8MffDffP/u$"KS;M"2.,,kWRTG̯zjn2:yԑa2 0.2sf)*Wu*{~^Л))UoC X1;(An>1-Q%ƬM(mipZI^Zb}}QrFW0TOA}Rp|ޭR]4Zn
"
空间向量综合题在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直底面ABCD,E、F、G分别是AB、PC、CD中点,|PA|=|AB|=|AD|=1.(底面ABCD,BC在前、AD在后)求PD与AC所成的角、求AP与平面PCD所成的角、求平面PAB
正四棱锥P-ABCD中,侧棱PA=2AB 求二面角P-AB-C的余弦值大小 ,用空间向量法做谢谢
用空间向量做如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.(Ⅰ)证明:BD⊥PC;(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC求二面角A-PC-D的正弦值 (空间向量做法)
在四棱锥p-abcd中,地面ABCD是边长为a的正方形,其对角线交点为o,侧面pad垂直地面ABCD,且PA=PD=[根号2/2]a求点o到面PAB的距离?怎么用空间向量的法向量求解此题
数学之空间向量与立体几何5四棱锥P-ABCD中,底面ABCD是一个平行四边形,向量AB={2,-1,-4},向量AD={4,2,0},向量AP={-1,2,-1}.(1)求证:PA⊥底面ABCD;(2)求四棱锥P-ABCD的体积;(3)对于向量a={x1,y1,z1},
如图在四棱锥P—ABCD中,底面ABCD是菱形,
高一数学——空间几何 求:二面角A-PD-C的余弦值如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求:二面角A-PD-C的余弦值(过程,请勿用空间向量法)
在四棱锥P-ABCD中,底面ABCD是正方形,E为PD中点,若向量PA=向量A,向量PB=向量b,向量PC=向量c,则向量BE= 我要过程 不需要答案
几道空间几何题1.四棱锥P-ABCD中,PA垂直于平面ABCD,底面ABCD是直角梯形,AB垂直于AD,CD垂直于AD,CD=2AB,E为PC中点,求证:(1)平面PDC垂直于平面PAD(2)BE平行于平面PAD2.在四棱锥P-ABCD中,四边形ABCD为
高中立体几何题 已知四棱锥P-ABCD中,
一道空间立体几何题,求详解,如图所示,在四棱锥p-abcd中,PA⊥面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD,1证明BD⊥PC2若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥p-abcd的体积
用空间向量做(建立空间直角坐标系)如图,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2根号3,PD=CD=2.(I)求异面直线PA与BC所成角的正切值; (II)证明平面PDC⊥平面ABCD; (III)求直线PB与
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点, 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2√2,PA=2,建立空间直角坐标系如何求E点的坐标,
见图.在四棱锥P-ABCD中底面ABCD是正方形
在四棱锥P-ABCD中,底面ABCD是正方形,证明:PA//平面EDB
在四棱锥P-ABCD中,PD垂直面ABCD,AD=CD,DB平分
如图,在四棱锥P-ABCD中,底面ABCD是平行四边形…