对于每个正整数n,设f(n)表示1+2+…+n的末尾数字.如f(1)=1,f(3)=6.试计算f(1)+f(2)+…+f(2011)的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 03:30:54
xRn@~ròeXS ]G 5/@~8@@95I8S)S^3v"!H=fJ IDM["kٹ1lU;&(b4ƺ/Viׄ^u KM;j%n-4E4leek#ʇWbC]N`Ywg뫞Dx )h AZHn:lf:`R2Rajrٲ!&ir N93*0!{rᩇ;9KO,R0pr^6̤d;.8 ֻgrp$o=zZO͏'yQ1Y1nf40F:IFÈD4ڊX6ŏA.uics˳cY9Rةo9Uw
对于每个正整数n,设f(n)表示1+2+…+n的末尾数字.如f(1)=1,f(3)=6.试计算f(1)+f(2)+…+f(2011)的值 对于每个正整数n,设f(n)表示1+2+…+n的末尾数字.如f(1)=1,f(3)=6.试计算f(1)+f(2)+…+f(2011)的值 给定k∈N*,设函数f:N*→N*满足:对于任意大于k的正整数n,f(n)=n-k.(1)设k=给定k∈N*,设函数f:N*→N*满足:对于任意大于k的正整数n,f(n)=n-k.(1)设k=1,则其中一个函数f在n=1处的函数值为________.(2)设k=4,且当n 给定k∈N*,设函数f:N*→N*满足:对于任意大于k的正整数给定k属于N*,设函数f:N*→N*满足:对于任意大于k的正整数n,f(n)=n-k.(1)设k=1,则其中一个函数f在n=1处的函数值为?(2)设k=4,且当n≤4时, 给定k∈N+,设函数f:N+→N+满足:对于任意大于k的正整数n,f(n)=n-k 设k=4,且当n≤4时,2≤f(n)≤3给定k∈N+,设函数f:N+→N+满足:对于任意大于k的正整数n,f(n)=n-k设k=4,且当n≤4时,2≤f(n)≤3, 给定k∈N*,设函数f:N*→N*满足对于任意大于k的正整数n,f(n)=n-k给定k∈N+,设函数f:N+→N+满足:对于任意大于k的正整数n:f(n)=n-k,则请回答并给出理由:(1)设k=1,则其中一个函数f在n=1处俄函数 设f(n)=1+1/2+1/3+……+1/n,是否存在关于正整数n的函数g(x)使等式f(1)+f(2)+f(3)+……+f(n-1)=g(n).[f(n)-1]对于n≥2的一切正实数都成立?并证明你的结论 给定k∈N+,设函数f:N+→N+满足:对于任意大于k的正整数n:f(n)=n-k,(1)n=k=1,题中给出的条件“大于k的正整数n”不适合,但函数值必须是一个正整数,故f(1)的值是一个常数(正整数);是0? f(x)=f(n-2)+f(n+2)对于任何大于1的正整数n都成立,且f(0)=2004,则f(2004)=? 设函数f(x)满足f(n+1)={2f(n)+n}/2,(n∈正整数),且f(1)=2,那么f(20)=? 设函数f(x)满足f(n+1)=(2f(n)+n)/2,n属于正整数,f(1)=2,f(20)=? 给定k∈N+,设函数f:N+→N+满足:对于任意大于k的正整数n:f(n)=n-k,则请回答并给出理由:(1)设k=1,则其中一个函数f在n=1处俄函数值为______.(2)设k=4,且当n≤4时,2≤ f(n)≤3,则不同的函数f 给定k∈N+,设函数f:N+→N+满足:对于任意大于k的正整数n:f(n)=n-k(1)设k=1,则其中一个函数f在n=1处的函数值为______.(2)设k=4,且当n≤4时,2≤ f(n)≤3,则不同的函数f的个数为________.不明白 2011湖南数学一道考题给定k属于N*,设函数f:N*→N*满足:对于任意大于k的正整数n,f(n)=n-k.(1)设k=1,则其中一个函数f在n=1处的函数值为2)设k=4,且当n≤4时,2≤f(n)≤3,则不同的函数f的个数 设n为正整数,f(n)表示一下满足条件十进制n位数(称为波形数)的个数满足(i)每一位上的数码是1,2,3,4中的一个(ii)当n>=3时,每个数码都要么比其相邻左右两个数码都小,要么比其相邻左右两个数码 设函数f(x)=1/4x^2+1/2x-3/4,对于正整数列{an},其前n项和为Sn,且Sn=f(an),(n∈N*).(1)求数列{an}的设函数f(x)=1/4x^2+1/2x-3/4,对于正整数列{an},其前n项和为Sn,且Sn=f(an),(n∈N*).(1)求数列{an}的通项公式 一道湖南高考数学题的疑问给定k∈N*,设函数f:N*→N*满足:对于任意大于k的正整数n,f(n)=n-k.(1)设k=1,则其中一个函数f在n=1处的函数值为________;(2)设k=4,且当n≤4时,2≤f(n)≤3,则不同的函 设n为正整数,[x]表示不超过x的最大正整数,解方程 x+2[x]+3[x]+…+n[x]=[n^2* (n+1)^2]/2