x^2n+y^2n==1 (n=1,2,3,4,5,6,7,8,9,10),用mathmatic计算各个图形的弧长求详细的实验程序
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 01:00:39
x[SWc9geFK_bDOn˵3EDPk*mA$O~g7ؑv̈́pw9
w9qjGrcYlTEPMC0B}ae_6X]^w/_nastucVo7+ne>>%_;I]sk|]w1Iw;EvEP,D\s\](DZxHjbg_ͽ|{Z]Xz>G9ӃZRt,9Ys\JꕗA D?ӽlx7;'Lz4mgG;Hs>Hvx_H/Kbe0!x+ޅƃk7j[i NVE_Hw#v2r0?zs L`@D+Z21TD75(&f"*
GDש&B
}q=躩ˆbb*gUu]6LPj_`M7tBthꞸf*4ꁴ.cStUT8t:|'D3
M
jT>;ƆjX ";؋ll:IMZLJJRo/;74>4MlhrhP/bCҷ}ƇXFLEO馚d)4R8((V2&k,24J19Ԙ))P,gLJDW h2TF @ISNaXȌTJI"ϻU'k&kO;բ{9|}q'CvݩӰwcMLH 6~>) /{q77k2pU+5o7g{s}95f;5opԟks?:\̢{;mZT/ WN|1W+?ilWZ;C7p3wK;%'WG'm}'ܧA#GUDpi^1l(RiWj8 Ȑ
[r_1_o[[hӣh++E:}iaBHxryEevR`Ȁ0D%pKl1BA5%
ZvYpz5 >%HZ/81u,@)R0$s^paR/oBxiM>Ǭ=+:K~I!y"@
++-D(x|Ma!ũGAPJl"/CÖ _ϖa'̔_ne5YõM чP̓X2JDDjFpcczrFMGF"-` Z/2nrٶwO9S-q_._z[˛w+Sy1FvK_9n#F#4$)[<6oّ)JKU'3S}!Hd@EdPf`ar¾Z`^ۀ>!*2}C#+އG%)M9Jc)xy-݇_Hj:ow6 }I/^0{bBfnBhp/O 3;AqU(:Ra
sB)aBP
=RTo- |5{
f(x)=e^x-x 求证(1/n)^n+(2/n)^n+...+(n/n)^n
x^n+x^n-1y+x^n-2y^2+.+x^2y^n-2 +xy^n-1 +y^n=多少?
当n取何值时,y=(n²+2n)x ^n²+n-1x ^n²+n-1 ^后面的是幂数
用列举法表示 集合{x|x=(-1)^n,n∈N}{y|y=-x^2+6,x∈N,y∈N}{(x,y)|y=-x^2+6,x∈N,y∈N}
当n取什么值时,y=(n^2+2n)x^(n^2+n-1)是反比例函数
y=(1-2X)^n的n阶导数,
计算:(x^2n-2x^ny^n+y^2n)/(x^n-y^n)(n为正整数)=
若1+2+3+...+n=a,求代数式(x^ny)(x^n-1y^2)(x^n-2y^3)...(x^2y^n-1)(xy^n)
若1+2+3+...+n=a,求代数式(x^ny)(x^n-1y^2)(x^n-2y^3)...(x^2y^n-1)(xy^n)
若1+2+3+...+n=55,求代数式(x^ny)(x^n-1y^2)(x^n-2y^3)...(x^2y^n-1)(xy^n)
y=(n^2+n)x^2-(2n+1)x+1的因式分解
已知抛物线y=-1/2x^2-(n+1)x-2n (n
已知实数x,y满足x+y=1,n∈N+,求证x^2n+y^2n≥1/2^(2n-1)
已知抛物线y=-1/2x²-(n+1)x-2n(n
已知抛物线y=-1/2x²-(n+1)x-2n(n
已知抛物线y=-0.5x^2-(n+1)x-2n(n
n(x+y)=xy 怎么化成:(x-n)(y-n)=n^2
设集合M={x|x=2n+1,n∈N},N={x|x=3n,n∈N},则M∩N=