证明1-2sinxcosx/cos^2x-sin^2x=1-tanx/1+tanx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 14:52:43
x){ٌ>C]̼
} gT)[Cݒļ
}CmeTO;rl@R\$Ќ3ҏFj`v,b}$Y$~6yvPۀ9};z鄞';g$5@.HOM}P ϛ
证明1-2sinxcosx/cos^2x-sin^2x=cos^2x-sin^2/1+2sinxcosx
证明1-2sinxcosx/cos^2x-sin^2x=1-tanx/1+tanx
证明:(1+2sinXcosX)/(sin^2X-cos^2X)=(tanX+1)/(tanX-1)
(cos^2x-sin^2x)/(1-2sinxcosx)=(1+tanx)/(1-tanx)证明题
证明:sin^2x(1+cotx)+cos^2x(1+tanx)=1-sinxcosx
化简2*(sinxcosx-cos平方x)+1
sin^2xtanx+(cos^2x/tanx)+2sinxcosx-1+cos/sinxcosx
求证 1+2sinxcosx/sin^2x-cos^2x=sin^2x-cos^2x/1-2sinxcosx
(1-2sinxcosx)/[(cos)^2]a-(sin^2)x=(1-tanx)/(1+tanx)证明
2sin^2x-sinxcosx-cos^2=1
化简y=2sinxcosx+2cos^2x-1
化简1+2sinxcosx+2cos²x
求cos^2x-sinxcosx-1/2单调增区间
cos^2+2sinxcosx+sin^2x
化简 根号3sinXcosX+cos*2X
y=sinxcosx+cos(2x)化简
化简:(cos*2x-0.5)/(sinxcosx)
sin^2xtanx+cos^2x/tanx+2sinxcosx-(1+cosx/sinxcosx)化简