椭圆x^2/2+y^2=1有动点P,定点A(8,0)B(1,3),求三角形ABP重心个轨迹方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 00:49:09
xR;O0+mQxTI5;)(PQ!"-gLm
`bΟܨ]܊
s,sggXO!Q,(k`لEzډW;ZW7E9\_~7n`k~+`xVQ@B\Phh8NVgP`[(Y⥴w<@L̜oĒУܤ:V[I;k$Jz0 zC2_e_,Ѵ),^ʃg"C,m9ܤ:8ioWl足S9ƍ_{u0_-߀l5lmLj9;L!F xҧYX
L6mpu^94bܕFɆTQGn܃"%
#%xXՈw.?D.4fw
已知椭圆方程为x^2*9+y^2/4=1,在椭圆上是否存在点P(x,y)到定点A(a,0))(其中0
椭圆x方/2+y方=1,M(0,1/2)是y轴上的定点,P在椭圆上,则PM的
已知椭圆x^2+2y^2=1,点A(-1,0).过A点做直线交椭圆于P,Q.求证:PQ恒过定点
椭圆x^2/2+y^2=1有动点P,定点A(8,0)B(1,3),求三角形ABP重心个轨迹方程
设P(x,y)是椭圆x^2/4+y^2/2=1的动点,定点M(1/2,0),求动点P到定点M的距离最大值与最小
求定点A(0,a)与椭圆x^2/25+y^2/9=1上的动点P(x,y)之间距离的最大值
已知椭圆x^2/9+y^2/4=1,过A(0,2)作PA⊥QA,P,Q均在椭圆上,试问直线PQ是否恒过一定点 并求出定点
已知F(1,0)是中心在原点的椭圆x^2/m+y^2/8=1的一个焦点,P是椭圆上的点,定点A(2,1)在椭圆内求|PA|+|PF|的最小值
F(1,0)是中心在原点的椭圆x^2/m+y^2/8=1的一个焦点,P是椭圆上的点,定点A(2,1)在椭圆内求|PA|+|PF|最小值
F是椭圆(x^2/4)+(y^2/3)=1的右焦点,A(1,1)为椭圆内一定点,P为椭圆上一动点. (1)|PA|+|PF|的最小值为答案是:4-根号5
f是椭圆x^2/4+y^2/3=1的右焦点,A(1,1)是椭圆内的一个定点,P为椭圆上的一个动点,求PA+PF的最值
f是椭圆x^2/4+y^2/3=1的右焦点,A(1,1)是椭圆内的一个定点,P为椭圆上的一个动点,求PA+PF的最小值
定点A(-1,1),B(1,0),点P在椭圆x^2/4+y^2/3=1上运动.求|PA|+2|PB|
求椭圆方程x^2/2+y^2=1中过定点P(0,2)的弦AB中点M的轨迹方程
已知定点M(-1,0),N(1,0),p是椭圆x^2/4+y^2/3=1上的动点求1/PM+4/PN的最小值
求椭圆x^2/2+y^2=1上的点P到定点A(a,0)的距离的最小值
动点P在椭圆x^2/4+y^2=1上运动,定点A(2,3),求线段PA的中点M的轨迹方程?
求椭圆x^2/9+y^2/4=1上一点P与定点(1,0)之间距离的最小值.