工科论文:现代技术陶瓷的3主要领域及应用[1]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 09:39:49 工学论文
材料一般分为传统陶瓷和现代技术陶瓷两大类。传统陶瓷是指用天然硅酸盐粉末(如黏土、高岭土等)为原料生产的产品。因为原料的成分混杂和产品的性能波动大,仅用于餐具、日用容器、工艺品以及普通建筑材料(如地砖、水泥等),而不适用于工业用途。现代技术陶瓷是根据所要求的产品性能,通过严格的成份和生产工艺控制而制造出来的高性能材料,主要用于高温和腐蚀介质环境,是现代材料科学发展最活跃的领域之一。下面对现代技术陶瓷3个主要领域:结构陶瓷、陶瓷基复合材料和功能陶瓷作一简单介绍。
一、结构陶瓷同金属材料相比,陶瓷的最大优点是优异的高温机械性能、耐化学腐蚀、耐高温氧化、耐磨损、比重小(约为金属的1/3),因而在许多场合逐渐取代昂贵的超高合金钢或被应用到金属材料根本无法胜任的场合,如发动机气缸套、轴瓦、密封圈、陶瓷切削刀具等。结构陶瓷可分为三大类:氧化物陶瓷、非氧化物陶瓷和玻璃陶瓷。
1、氧化物陶瓷主要包括氧化铝、氧化锆、莫来石和钛酸铝。氧化物陶瓷最突出优点是不存在氧化问题,原料价格低廉,生产工艺简单。氧化铝和氧化锆具有优异的室温机械性能,高硬度和耐化学腐蚀性,主要缺点是在1000℃以上高温蠕变速率高,机械性能显著降低。氧化铝和氧化锆主要应用于陶瓷切削刀具、陶瓷磨料球、高温炉管、密封圈和玻璃熔化池内衬等。莫来石室温强度属中等水平,但它在1400℃仍能保持这一强度水平,并且高温蠕变速率极低,因此被认为是陶瓷发动机的主要候选材料之一。上述三种氧化物也可制成泡沫或纤维状用于高温保温材料。钛酸铝陶瓷体内存在广泛的微裂纹,因而具有极低的热膨胀系数和热传导率。它的主要缺点是强度低,无法单独作为受力元件,所以一般用它加工内衬用作保温、耐热冲击元件,并已在陶瓷发动机上得到应用。
2、非氧化物陶瓷主要包括碳化硅、氮化硅和赛龙(SIALON)。同氧化物陶瓷不同,非氧化物陶瓷原子间主要是以共价键结合在一起,因而具有较高的硬度、模量、蠕变抗力,并且能把这些性能的大部分保持到高温,这是氧化物陶瓷无法比拟的。但它们的烧结非常困难,必须在极高温度(1500~2500℃)并有烧结助剂存在的情况下才能获得较高密度的产品,有时必须借助热压烧结法才能达到希望的密度(>95%),所以非氧化物陶瓷的生产成本一般比氧化物陶瓷高。这些含硅的非氧化物陶瓷还具有极佳的高温耐蚀性和抗氧化性,因此一直是陶瓷发动机的最重要材料,目前已经取代了许多超高合金钢部件。现有最佳超高合金钢的使用温度低于1100℃,而发动机燃料燃烧的温度在1300℃以上,因而普遍采用高压水强制制冷。待非氧化物陶瓷代替超高合金钢后,燃烧温度可提高到1400℃以上,并且不需要水冷系统,这在能源利用和环保方面具有重要的战略意义。非氧化物陶瓷也广泛应用于陶瓷切削刀具。同氧化物陶瓷相比,其成本较高,但高温韧性、强度、硬度、蠕变抗力优异得多,并且刀具寿命长、允许切削速度高,因而在刀具市场占有日益重要地位。它的应用领域还包括轻质无润滑陶瓷轴承、密封件、窑具和磨球等。
3、玻璃陶瓷玻璃和陶瓷的主要区别在于结晶度,玻璃是非晶态而陶瓷是多晶材料。玻璃在远低于熔点以前存在明显的软化,而陶瓷的软化温度同熔点很接近,因而陶瓷的机械性能和使用温度要比玻璃高得多。玻璃的突出优点是可在玻璃软化温度和熔点之间进行各种成型,工艺简单而且成本低。玻璃陶瓷兼具玻璃的工艺性能和陶瓷的机械性能,它利用玻璃成型技术制造产品,然后高温结晶化处理获得陶瓷。工业玻璃陶瓷体系有镁-铝-硅酸盐、锂-镁-铝-硅酸盐和钙-镁-铝-硅酸盐系列,它们常被用来制造耐高温和热冲击产品,如炊具。此外它们作为建筑装饰材料正得到越来越广泛的应用,如地板、装饰玻璃。
二、陶瓷基复合材料复合材料是为了达到某些性能指标将两种或两种以上不同材料混合在一起制成的多相材料,它具有其中任何一相所不具备的综合性能。陶瓷材料的最大缺点是韧性低,使用时会产生不可预测的突然性断裂,陶瓷基复合材料主要是为了改善陶瓷韧性。基于提高韧性的陶瓷基复合材料主要有两类:氧化锆相变增韧和陶瓷纤维强化复合材料。氧化锆相变增韧复合材料是把部分稳定的氧化锆粉末同其他陶瓷粉末(如氧化铝、氮化硅或莫来石)混合后制成的高韧性材料,其断裂韧性可以达到10Mpam1/2以上,而一般陶瓷的韧性仅有3Mpam1/2左右。这类材料在陶瓷切削刀具方面得到了非常广泛的应用。纤维强化被认为是提高陶瓷韧性最有效和最有前途的方法。纤维强度一般比基体高得多,所以它对基体具有强化作用;同时纤维具有显著阻碍裂纹扩展的能力,从而提高材料的韧性。目前韧性最高的陶瓷就是纤维强化的复合材料,例如碳化硅长纤维强化的碳化硅基复合材料韧性高达30Mpam1/2以上,比烧结碳化硅的韧性提高十工学论文