九年级上册数学期末测试卷含答案[1]
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/05 10:24:48 初中三年级
九年级上册数学期末测试卷含答案[1]初中三年级
一、选择题(共12小题,每小题4分,满分48分)
1.若x:y=6:5,则下列等式中不正确的是( )
A. B. C. D.
考点:比例的性质.
分析:根据比例设x=6k,y=5k,然后分别代入对各选项进行计算即可判断.
解答: 解:∵x:y=6:5,
∴设x=6k,y=5k,
A、 = = ,故本选项错误;
B、 = = ,故本选项错误;
C、 = =6,故本选项错误;
D、 = =﹣5,故本选项正确.
故选D.
点评:本题考查了比例的性质,利用“设k”法表示出x、y可以使计算更加简便.
2.二次函数y =x2﹣2x﹣2与坐标轴的交点个数是( )
A.0个 B.1个 C.2个 D.3个
考点:抛物线与x轴的交点.
分析:先计算根的判别式的值,然后根据b2﹣4ac决定抛物线与x轴的交点个数进行判断.
解答: 解:∵△=(﹣2)2﹣4×1×(﹣2)=12>0,
∴二次函数y=x2﹣2x﹣2与x轴有2个交点,与y轴有一个交点.
∴二次函数y=x2﹣2x﹣2与坐标轴的交点个数是3个.
故选D.
点评:本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2﹣4ac决定抛物线与x轴的交点个数;△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
3.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连结AE,BD交于点F,则S△DEF:S△ADF:S△ABF等于( )
A.2:3:5 B.4:9:25 C.4:10:25 D.2:5:25
考点:相似三角形的判定与性质;平行四边形的性质.
分析:根据平行四边形性质得出DC=AB,DC∥AB,求出DE:AB=2:5,推出△DEF∽△BAF,求出 =( )2= , = = ,根据等高的三角形的面积之比等于对应边之比求出 = = = ,即可得出答案.
解答: 解:∵四边形ABCD是平行四边形,
∴DC=AB,DC∥AB,
∵DE:CE=2:3,
∴DE:AB=2:5,
∵DC∥AB,
∴△DEF∽△BAF,
∴ =( )2= , = = ,
∴ = = = (等高的三角形的面积之比等于对应边之比),
∴S△DEF:S△ADF:S△ABF等于4:10:25,
故选C.
点评:本题考查了平行四边形的性质和相似三角形的判定和性质的应用,注意:相似三角形的面积之比等于相似比的平方.
4.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )
A. B. C. D.
考点:列表法与树状图法.
分析:列举出所有情况,看卡片上的数字之和为奇数的情况数占总情况数的多少即可.
解答: 解:
1 2 3 4
1 3 4 5
2 3 5 6
3 4 5 7
4 5 6 7
由列表可知:共有3×4=12种可能,卡片上的数字之和为奇数的有8种.
所以卡片上的数字之和为奇数的概率是 .
故选C.
点评:本题考查求随机事件概率的方法.注意:任意取两张,相当于取出不放回.用到的知识点为:概率=所求情况数与总情况数之比.
5.如图,一根5m长的绳子,一端拴在互相垂直的围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是( )
A. πm2 B. πm2 C. πm2 D. πm2
考点:扇形面积的计算.
专题:压轴题.
分析:小羊A在草地上的最大活动区域是一个扇形+一个小扇形的面积.
解答: 解:大扇形的圆心角是90度,半径是5,
所以面积= = m2;
小扇形的圆心角是180°﹣120°=60°,半径是1m,
则面积= = (m2),
则小羊A在草地上的最大活动区域面积= + = (m2).
故选D.
点评:本题的关键是从图中找到小羊的活动区域是由哪几个图形组成的,然后分别计算即可.
6.二次函数y=ax2﹣2x﹣3(a<0)的初中三年级
1.若x:y=6:5,则下列等式中不正确的是( )
A. B. C. D.
考点:比例的性质.
分析:根据比例设x=6k,y=5k,然后分别代入对各选项进行计算即可判断.
解答: 解:∵x:y=6:5,
∴设x=6k,y=5k,
A、 = = ,故本选项错误;
B、 = = ,故本选项错误;
C、 = =6,故本选项错误;
D、 = =﹣5,故本选项正确.
故选D.
点评:本题考查了比例的性质,利用“设k”法表示出x、y可以使计算更加简便.
2.二次函数y =x2﹣2x﹣2与坐标轴的交点个数是( )
A.0个 B.1个 C.2个 D.3个
考点:抛物线与x轴的交点.
分析:先计算根的判别式的值,然后根据b2﹣4ac决定抛物线与x轴的交点个数进行判断.
解答: 解:∵△=(﹣2)2﹣4×1×(﹣2)=12>0,
∴二次函数y=x2﹣2x﹣2与x轴有2个交点,与y轴有一个交点.
∴二次函数y=x2﹣2x﹣2与坐标轴的交点个数是3个.
故选D.
点评:本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2﹣4ac决定抛物线与x轴的交点个数;△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
3.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连结AE,BD交于点F,则S△DEF:S△ADF:S△ABF等于( )
A.2:3:5 B.4:9:25 C.4:10:25 D.2:5:25
考点:相似三角形的判定与性质;平行四边形的性质.
分析:根据平行四边形性质得出DC=AB,DC∥AB,求出DE:AB=2:5,推出△DEF∽△BAF,求出 =( )2= , = = ,根据等高的三角形的面积之比等于对应边之比求出 = = = ,即可得出答案.
解答: 解:∵四边形ABCD是平行四边形,
∴DC=AB,DC∥AB,
∵DE:CE=2:3,
∴DE:AB=2:5,
∵DC∥AB,
∴△DEF∽△BAF,
∴ =( )2= , = = ,
∴ = = = (等高的三角形的面积之比等于对应边之比),
∴S△DEF:S△ADF:S△ABF等于4:10:25,
故选C.
点评:本题考查了平行四边形的性质和相似三角形的判定和性质的应用,注意:相似三角形的面积之比等于相似比的平方.
4.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )
A. B. C. D.
考点:列表法与树状图法.
分析:列举出所有情况,看卡片上的数字之和为奇数的情况数占总情况数的多少即可.
解答: 解:
1 2 3 4
1 3 4 5
2 3 5 6
3 4 5 7
4 5 6 7
由列表可知:共有3×4=12种可能,卡片上的数字之和为奇数的有8种.
所以卡片上的数字之和为奇数的概率是 .
故选C.
点评:本题考查求随机事件概率的方法.注意:任意取两张,相当于取出不放回.用到的知识点为:概率=所求情况数与总情况数之比.
5.如图,一根5m长的绳子,一端拴在互相垂直的围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是( )
A. πm2 B. πm2 C. πm2 D. πm2
考点:扇形面积的计算.
专题:压轴题.
分析:小羊A在草地上的最大活动区域是一个扇形+一个小扇形的面积.
解答: 解:大扇形的圆心角是90度,半径是5,
所以面积= = m2;
小扇形的圆心角是180°﹣120°=60°,半径是1m,
则面积= = (m2),
则小羊A在草地上的最大活动区域面积= + = (m2).
故选D.
点评:本题的关键是从图中找到小羊的活动区域是由哪几个图形组成的,然后分别计算即可.
6.二次函数y=ax2﹣2x﹣3(a<0)的初中三年级