作业帮 > 高一 > 教育资讯

2016高一数学练习册答案参考[1]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:25:49 高一
2016高一数学练习册答案参考[1]
2016高一数学练习册答案参考[1]高一
高一数学练习册答案参考

  高中新课程作业本 数学

  答案与提示 仅供参考

  第一章集合与函数概念

  1.1集合

  1 1 1集合的含义与表示

  1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}.

  7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6.

  10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不唯一,如可表示为(x,y)|y=x+2,

  y=x2.

  11.-1,12,2.

  1 1 2集合间的基本关系

  1.D.2.A.3.D.4. ,{-1},{1},{-1,1}.5. .6.①③⑤.

  7.A=B.8.15,13.9.a≥4.10.A={ ,{1},{2},{1,2}},B∈A.

  11.a=b=1.

  1 1 3集合的基本运算(一)

  1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}.

  8.A∪B={x|x<3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.

  11.{a|a=3,或-22

  1 1 3集合的基本运算(二)

  1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n∈Z.

  7.{-2}.8.{x|x>6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.

  10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4}.

  11.a=4,b=2.提示:∵A∩ 綂 UB={2},∴2∈A,∴4+2a-12=0 a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩ 綂 UB={2},∴-6 綂 UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0 b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6 綂 UB,而2∈ 綂 UB,满足条件A∩ 綂 UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2},

  ∴2 綂 UB,与条件A∩ 綂 UB={2}矛盾.

  1.2函数及其表示

  1 2 1函数的概念(一)

  1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).

  7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.

  10.(1)略.(2)72.11.-12,234.

  1 2 1函数的概念(二)

  1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0.

  7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).

  9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).

  1 2 2函数的表示法(一)

  1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.

  8.

  x1234y828589889.略.10.1.11.c=-3.

  1 2 2函数的表示法(二)

  1.C.2.D.3.B.4.1.5.3.6.6.7.略.

  8.f(x)=2x(-1≤x<0),

  -2x+2(0≤x≤1).

  9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2,

  a+b=0,解得a=1,b=-1.

  10.y=1.2(0

  2.4(20

  3.6(40

  4.8(60

  1.3函数的基本性质

  1 3 1单调性与最大(小)值(一)

  1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k<12.高一