高二数学三角函数学习要点[1]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 06:06:47 高二
高二数学三角函数学习要点[1]高二
高二数学三角函数学习要点
一、函数学习的几个步骤
先送小诗一首
学函数
函数函数定义铺路, 式子摆出,再限制参数,
定义域优先,值域断后,
图像是小名,性质是辅助,
拓展要洒脱,应用要把握好步骤,
学吧,学吧,请走出自己的路。
1、学习某个函数肯定是先学习定义,而定义一般是用函数式来定义的,并且定义式中的参数一般会有一定的限制。如:一次函数y=ax+b,a不为0。
2、定义域优先应该说所有的老师都明白,但是应用的时候就可能会忘记,事实上在方程与不等式的研究中也应该有“定义域”优先的原则。缺少了定义域就不是完整的函数的定义了。而函数的值域是由解析式与定义域唯一确定的,所以一般不写。但它是研究的重点,研究的方法也非常多,并且不同的函数研究的方法不一样。
3、图像也是表示函数的一种方式,它直观,用其研究性质或是直接解题会很方便。性质只是对函数的一种深入思考,研究时不能受到局限。
4、拓展包括定义与性质,比如研究参数对函数的影响,值域中要研究最大最小值,奇偶性应该研究其它的对称性等;函数应用题的思考步骤应该是:?是自变量,?是函数,什么关系?,定义域怎么样?,……
5、谈谈函数定义中的参数对单调性的影响
各位朋友有没有注意到这一点:
函数定义中的参数对函数的单调性产生直接的影响……
(1)一次函数:a>0时,单调增;a<0时,单调减;
(2)二次函数:a>0时,减后增;a<0时,增后减;
(3)三次函数:a>0时,一直增或是增减增;a<0时,一直减或是减增减;
(4)指数函数与对数函数:当0
二、三角函数学习的序曲
再送小诗一首
推广角
角角角,锐角直角加钝角,皆为图形角;
有始有终旋转角,有逆有顺任意角,放入直角坐标后,终边确定解析角;
锐角钝角是单区角,象限角为多区角,直角只是一个角,象限间角是多个角;
角角角,用度做单位太蹩脚,改用弧度才真正吹起函数的号角。
1、用平面内从一点发出的两条射线所构成的图形来定义角,是中学生最先学到的角的概念,这种定义下的角叫图形角;
2、由平面内的一条确定的射线绕起点旋转而形成的角,定义为旋转角,开始的射线为角的始边,终止的位置射线为终边,旋转角的范围可以达到一周;
3、把上述的逆时针方向旋转而成的角定义为正角,顺时针方向旋转而形成的角定义为负角,转过的度数定义为角的大小,此时的角为任意角;
4、为了研究三角函数我们使任意角的始边与x的非负半轴重合,这样被确定的角我们(也许只有我自己)把它叫做解析角。此时一个终边可以确定无限多个任意角;
5、用弧的长度与对应圆的半径的比值来度量角,就是我们引入的弧度制,所以弧度就是用弧来度量的意思;
6、省略了角的弧度这个单位之后,角的大小就与实数产生了一一对应的关系,这为研究三角函数提供了必要的前提条件;
7、角的再发展
当角在平面上感觉有点郁闷的时候,它就开始了新的旅程:
(1)异面直线所成的角;
(2)斜线与平面所成的角;
(3)二面角;
三、表示法中的过渡
一般来说,我们表示函数习惯于用y=f(x)表示,其中x表示自变量,y表示函数,f表示对应关系。那么我们有没有注意到,学习三角函数的过程中:
1、初中就学习了三角函数,但是没有说什么是自变量,什么是函数。只是在直角三角形中,定义了锐角a的正弦、余弦、正切。
2、高中把角推广到任意角之后,给出三角函数的定义时,使用的角仍然为a,只是定义用解析角的终边上的任意一点的坐标和该点到原点的距离来定义(特别地,也可用终边与单位圆的交点的坐标定义),知道这是为什么吗?
3、在研究三角函数的图象与性质的时候, 才把正弦函数的解析式写成y=sinx,余弦写为y=cosx......
教学中,千万不要忽略这一点,教材这样处理是有它自已的道理的。
四、几个定义的对照
1、初中学习了在直角三角形中定义锐角的三角函数,定义过程没有任何理由,利用定义可以根据两个特殊三角形记忆三个特殊角的三角函数值;
2、在直角坐标系中,用角的终边与单位圆的交点纵坐标定义正弦,用横坐标定义角的余弦,……,利用这个公式容易证明同角关系式,容易看出不同象限角的各个三角函数值的符号,也容易得到相关的诱导公式;
3、单位圆中的三角函数线也是三角函数的定义,只不过是用有向线段的数量来定义的,利用这个高二
一、函数学习的几个步骤
先送小诗一首
学函数
函数函数定义铺路, 式子摆出,再限制参数,
定义域优先,值域断后,
图像是小名,性质是辅助,
拓展要洒脱,应用要把握好步骤,
学吧,学吧,请走出自己的路。
1、学习某个函数肯定是先学习定义,而定义一般是用函数式来定义的,并且定义式中的参数一般会有一定的限制。如:一次函数y=ax+b,a不为0。
2、定义域优先应该说所有的老师都明白,但是应用的时候就可能会忘记,事实上在方程与不等式的研究中也应该有“定义域”优先的原则。缺少了定义域就不是完整的函数的定义了。而函数的值域是由解析式与定义域唯一确定的,所以一般不写。但它是研究的重点,研究的方法也非常多,并且不同的函数研究的方法不一样。
3、图像也是表示函数的一种方式,它直观,用其研究性质或是直接解题会很方便。性质只是对函数的一种深入思考,研究时不能受到局限。
4、拓展包括定义与性质,比如研究参数对函数的影响,值域中要研究最大最小值,奇偶性应该研究其它的对称性等;函数应用题的思考步骤应该是:?是自变量,?是函数,什么关系?,定义域怎么样?,……
5、谈谈函数定义中的参数对单调性的影响
各位朋友有没有注意到这一点:
函数定义中的参数对函数的单调性产生直接的影响……
(1)一次函数:a>0时,单调增;a<0时,单调减;
(2)二次函数:a>0时,减后增;a<0时,增后减;
(3)三次函数:a>0时,一直增或是增减增;a<0时,一直减或是减增减;
(4)指数函数与对数函数:当0
二、三角函数学习的序曲
再送小诗一首
推广角
角角角,锐角直角加钝角,皆为图形角;
有始有终旋转角,有逆有顺任意角,放入直角坐标后,终边确定解析角;
锐角钝角是单区角,象限角为多区角,直角只是一个角,象限间角是多个角;
角角角,用度做单位太蹩脚,改用弧度才真正吹起函数的号角。
1、用平面内从一点发出的两条射线所构成的图形来定义角,是中学生最先学到的角的概念,这种定义下的角叫图形角;
2、由平面内的一条确定的射线绕起点旋转而形成的角,定义为旋转角,开始的射线为角的始边,终止的位置射线为终边,旋转角的范围可以达到一周;
3、把上述的逆时针方向旋转而成的角定义为正角,顺时针方向旋转而形成的角定义为负角,转过的度数定义为角的大小,此时的角为任意角;
4、为了研究三角函数我们使任意角的始边与x的非负半轴重合,这样被确定的角我们(也许只有我自己)把它叫做解析角。此时一个终边可以确定无限多个任意角;
5、用弧的长度与对应圆的半径的比值来度量角,就是我们引入的弧度制,所以弧度就是用弧来度量的意思;
6、省略了角的弧度这个单位之后,角的大小就与实数产生了一一对应的关系,这为研究三角函数提供了必要的前提条件;
7、角的再发展
当角在平面上感觉有点郁闷的时候,它就开始了新的旅程:
(1)异面直线所成的角;
(2)斜线与平面所成的角;
(3)二面角;
三、表示法中的过渡
一般来说,我们表示函数习惯于用y=f(x)表示,其中x表示自变量,y表示函数,f表示对应关系。那么我们有没有注意到,学习三角函数的过程中:
1、初中就学习了三角函数,但是没有说什么是自变量,什么是函数。只是在直角三角形中,定义了锐角a的正弦、余弦、正切。
2、高中把角推广到任意角之后,给出三角函数的定义时,使用的角仍然为a,只是定义用解析角的终边上的任意一点的坐标和该点到原点的距离来定义(特别地,也可用终边与单位圆的交点的坐标定义),知道这是为什么吗?
3、在研究三角函数的图象与性质的时候, 才把正弦函数的解析式写成y=sinx,余弦写为y=cosx......
教学中,千万不要忽略这一点,教材这样处理是有它自已的道理的。
四、几个定义的对照
1、初中学习了在直角三角形中定义锐角的三角函数,定义过程没有任何理由,利用定义可以根据两个特殊三角形记忆三个特殊角的三角函数值;
2、在直角坐标系中,用角的终边与单位圆的交点纵坐标定义正弦,用横坐标定义角的余弦,……,利用这个公式容易证明同角关系式,容易看出不同象限角的各个三角函数值的符号,也容易得到相关的诱导公式;
3、单位圆中的三角函数线也是三角函数的定义,只不过是用有向线段的数量来定义的,利用这个高二