Sn为等差数列{An}的前N项和,若A2n/An=4n-1/2n-1,则S2n/Sn=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 18:48:19
Sn为等差数列{An}的前N项和,若A2n/An=4n-1/2n-1,则S2n/Sn=
x) {cO{6uӎՎyg<{pI=:/:;ٚ 3by6IET0EΆZ+hThkh>ٽiR+6D,Eƒp6u mOMJ5r4ԁz~Fy@=FyZCRbAb@!~qAboǔ

Sn为等差数列{An}的前N项和,若A2n/An=4n-1/2n-1,则S2n/Sn=
Sn为等差数列{An}的前N项和,若A2n/An=4n-1/2n-1,则S2n/Sn=

Sn为等差数列{An}的前N项和,若A2n/An=4n-1/2n-1,则S2n/Sn=
A2n /An=(4n-1)/(2n-1)代入:A2n=A1+(2n-1)d,An=A1+(n-1)d,可整理得:d=2A1,代入下式 S2n/Sn=[2nA1+2n*(2n-1)*d/2]/[nA1+n*(n-1)*d/2] =4