函数f(x)=ax²+bx+3a+b是定义在区间[a-1,2a]上的偶函数,则其值域是?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 03:25:23
函数f(x)=ax²+bx+3a+b是定义在区间[a-1,2a]上的偶函数,则其值域是?
xJ@Fjvn"T1Rrzk1؈&j*iEvn65U=2;7vGv54-oa1nF:i w/p1/ Sd2)Ln[}$]DD&ku%Ғ$ &|>AR&CY'Pb)VAyWel.}cͪ'=OU*8o;'l*p 'e

函数f(x)=ax²+bx+3a+b是定义在区间[a-1,2a]上的偶函数,则其值域是?
函数f(x)=ax²+bx+3a+b是定义在区间[a-1,2a]上的偶函数,则其值域是?

函数f(x)=ax²+bx+3a+b是定义在区间[a-1,2a]上的偶函数,则其值域是?
偶函数的定义域必须关于原点对称,那么a-1=-2a,所以a=1/3
f(-x)=a(-x)²+b(-x)+3a+b=ax²-bx+3a+b,f(x)=ax²+bx+3a+b
偶函数,那么f(x)=f(-x),即ax²-bx+3a+b=ax²+bx+3a+b,所以b=-b,所以b=0
那么f(x)=1/3*x²+1,定义域为[-2/3,2/3]
那么0≤x²≤4/9,所以0≤1/3*x²≤4/27,所以1≤1/3*x²+1≤31/27,即值域为[1,31/27]