怎么证明椭圆切线平分焦点三角形的外角

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 10:21:44
怎么证明椭圆切线平分焦点三角形的外角
xWMSI+s1S9aopJ^˜`(& jb{aBvbߏy?fnmn,ѝ _< 1 k孕S+6[kv-}VٗF4jn? Z'zlemfkaV:{c 5B eI˹h l:E?J* |.%T=L%%TY9SlwfЕVpDۥk<JR:R\7Ȫ4HXej!1-K|2P6iӴ#n\SMsE5y5d`:"C&ۃ WKlFDc 崒 cgѰ]qrbDdpFQH0˥UL۽؀t^Ƽxip77 /&TUI d"L%Ty(#K u](ʜB  4a AOSn*Xq zlIQSOWZ74+jka&M:R/-EU7 tx^ޠ hLoճiVI7y~4Aa2,Q^r$Ov 4{h5D/q

怎么证明椭圆切线平分焦点三角形的外角
怎么证明椭圆切线平分焦点三角形的外角

怎么证明椭圆切线平分焦点三角形的外角
证明:不失一般性,设椭圆方程为x^2/a^2+y^2/b^2=1 (a>b>0),交点分别为F1(-c,0)、F2(c,0).不失一般性,设不与F1F2共线的椭圆第一象限上任意一点P(x0,y0),则有
c^2=a^2-b^2①
x0^2/a^2+y0^2/b^2=1②
由②得b^2x0^2+a^2y0^2=a^2b^2
x^2/a^2+y^2/b^2=1两边对x求导,得
2x/a^2+2yy'/b^2=0得y'=-b^2*x/(a^2*y)
则过点P的切线方程为y-y0=-b^2*x0/(a^2*y0)*(x-x0)
令y=0,解得x=(a^2y0^2+b^2x0^2)/(b^2x0)=a^2b^2/(b^2x0)=a^2/x0
则过椭圆上点P(x0,y0)的切线交x轴于点M(a^2/x0,0).于是
|F1M|=a^2/x0+c,|F2M|=a^2/x0-c
|PF1|=√[(x0+c)^2+y0^2],|PF2|=√[(x0-c)^2+y0^2]

(|F1M|*|PF2|)^2=(a^2/x0+c)^2*[(x0-c)^2+y0^2]
(|F2M|*|PF1|)^2=(a^2/x0-c)^2*[(x0+c)^2+y0^2]
于是:
(|F1M|*|PF2|)^2-(|F2M|*|PF1|)^2=(a^2/x0+c)^2*[(x0-c)^2+y0^2]-(a^2/x0-c)^2*[(x0+c)^2+y0^2]
=(a^4/x0^2+2a^2c/x0+c^2)(x0^2-2cx0+c^2+y0^2)-(a^4/x0^2-2a^2c/x0+c^2)(x0^2+2cx0+c^2+y0^2)
=2a^2c/x0*(x0^2-2cx0+c^2+y0^2)-2cx0*(a^4/x0^2+2a^2c/x0+c^2)-(-2a^2c/x0)*(x0^2+2cx0+c^2+y0^2)-2cx0*(a^4/x0^2-2a^2c/x0+c^2)
=2a^2c/x0*2(x0^2+c^2+y0^2)-2cx0*2(a^4/x0^2+c^2)
=4c*[a^2/x0*(x0^2+c^2+y0^2)-x0*(a^4/x0^2+c^2)]
=4c*[(a^2x0-c^2x0)+a^2/x0*(c^2-a^2)+a^2y0^2/x0]
=4c*[b^2x0-a^2b^2/x0+a^2y0^2/x0]=4c/x0*[b^2x0^2-a^2b^2+a^2y0^2]=0
故(|F1M|*|PF2|)^2=(|F2M|*|PF1|)^2
|F1M|*|PF2|=|F2M|*|PF1|
|PF1|/|PF2|=|F1M|/|F2M|
依外角平分线性质定理,知该切线平分焦点三角形PF1F2的外角.

已知条件太少

这个可以用解析算,不过非常麻烦(我试过)
最好用几何方法,
除了切点,这条切线上任意一点与F1,F2的距离均大于2a(画出图形,利用三角形两边之和大于第三边可证)
而直线外同侧两点F1F2与直线L上任一点P连线,两线段之和最短时一定是直线F1P,F2P与L所成角相同时取到(用轴对称的方法化曲为直,再利用三角形两边之和大于第三边)
能提这个问题的人应该是很有水平的,所...

全部展开

这个可以用解析算,不过非常麻烦(我试过)
最好用几何方法,
除了切点,这条切线上任意一点与F1,F2的距离均大于2a(画出图形,利用三角形两边之和大于第三边可证)
而直线外同侧两点F1F2与直线L上任一点P连线,两线段之和最短时一定是直线F1P,F2P与L所成角相同时取到(用轴对称的方法化曲为直,再利用三角形两边之和大于第三边)
能提这个问题的人应该是很有水平的,所以这里我就只讲讲思路,不写过程了.......
(顺便说,我们考试时就有人这么做的,给了满分)
这也是个物理结论

收起

题目:已知 为椭圆 的焦点,P为椭圆上一点。求证:点P处的切线PT必平分 在P处的外角.在解答此题之后,我们还得到一个重要的定理.
证法1 设 .
对椭圆方程 两边求导得,


又 , ,
由到角公式知



同理 .
∵ ,
∴ ,

全部展开

题目:已知 为椭圆 的焦点,P为椭圆上一点。求证:点P处的切线PT必平分 在P处的外角.在解答此题之后,我们还得到一个重要的定理.
证法1 设 .
对椭圆方程 两边求导得,


又 , ,
由到角公式知



同理 .
∵ ,
∴ ,
又 ,

证法2 设 , , ,如图1,过 、 作切线PT的垂线,垂足分别为M、N.
∵ 切线PT的方程为 ,则点 、 到PT的距离为




∴ ∽
∴ , 又∵
∵ .
两种证法都是由 导出,如图,设PD为法线(即PD 切线PT),则PD平分 ,故得如下重要定理.
定理 在椭圆上任意一点P的法线,平分该点两条焦半径的夹角.

收起

怎么证明椭圆切线平分焦点三角形的外角 请问,如何证明,椭圆上任意一点P处的切线平分△PF1F2在点P处的外角? F1,F2为椭圆的两个焦点,Q为椭圆上任一点,从任一焦点向三角形F1QF2的顶点Q的外角平分线引垂线,垂足为P证明P的轨迹为圆 椭圆的焦点三角形面积公式的证明过程 求证:椭圆上点P处的切线PT平分△PF1F2在点P处的外角 怎么证明三角形两外角平分线相交于另一个内角平分线上? 怎样证明三角形两个外角平分线的交点在第三个内角的平分线上 现在有一个等腰三角形,两个底角相等.顶角有一个外角,外角有一个角平分线,角平分线平分外角.三角形的外角等于不相邻的两个内角的和吗?所以这个外角等于两个底角的和.那怎么证明外角的 怎么证明椭圆通径是过椭圆焦点最短的弦 在一个椭圆中,怎么证明椭圆上距焦点最近的点在长轴上? 椭圆的切线怎么求? 任意一个椭圆,若X属于(-c,c)时,椭圆上任意一点的切线,并过切点做切线的垂线总平分切点到俩焦点所成...任意一个椭圆,若X属于(-c,c)时,椭圆上任意一点的切线,并过切点做切线的垂线总平分切 椭圆x2/a2+y2/b2=1(a>b>0)的两个焦点是F1、F2,以|F1F2|为边作正三角形,若椭圆恰平分三角形的另两边,则椭圆的离心率为[若椭圆恰平分三角形的另两边]怎么用 椭圆性质求证明椭圆中PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点 有关椭圆的证明题PT平分三角形PF1F2在点P处的外交,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆 除去长轴的两个端点 求椭圆焦点三角形面积的方法 已知BP,CP是三角形ABC的外角平分线,证明点P必在角BAC的角平分线上. 三角形ABC的外角平分线BP和CP交于点P,试证明:AP平分角BAC