设xn=1/1^2+1/2^2+...+1/n^2,证明数列{xn}有极限.请大家知道一二

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 10:38:56
设xn=1/1^2+1/2^2+...+1/n^2,证明数列{xn}有极限.请大家知道一二
xRJ@!6L~P,B@PjQKH}*BiѾb]O$3IVofҗ.D{s990F&1)aDu*"~/k%^yaEOM7A>k=wWvGEQOR7iĢih} (ާfd {ɉ<;I$F1*ddXB)逵~yB~_56sXdDthi5N(]_:vLiGvD(lRdn+,X6' "N(M Vh dZMsojnҥ18(b@-ֶ#J\YC.GUƙܚz,#,yCAyk%oz

设xn=1/1^2+1/2^2+...+1/n^2,证明数列{xn}有极限.请大家知道一二
设xn=1/1^2+1/2^2+...+1/n^2,证明数列{xn}有极限.
请大家知道一二

设xn=1/1^2+1/2^2+...+1/n^2,证明数列{xn}有极限.请大家知道一二
xn=1/1^2+1/2^2+...+1/n^2
xn>x(n-1)递增
xn=1/1^2+1/2^2+...+1/n^2

将1/n^2缩放为1/n^2<1/(n(n-1))=1/(n-1)-1/n,从第二项起每一项都放
则xn<1+(1-1/2)+(1/2-1/3)+……+(1/(n-1)-1/n)=2-1/n
同样缩放1/n^2>1/(n(n+1))=1/n-1/(n+1) 得xn>2-1/(n+1)
夹逼定理xn有极限 为2

夹逼法
1/1²+1/(1×2) + 1/(2×3)+……+1/(n-1)n>x(n)>1/(1×2) + 1/(2×3)+……+1/n(n+1)
1+1-1/2+1/2-1/3+……+1/(n-1)-1/n>x(n)>1-1/2+……+1/n-1/(n+1)
2 - 1/n>x(n)>1-1/(n+1)
数列2-1/n的极限是2
1-1/(n+1)的极限是1
所以x(n)必有极限