已知数列{an}中,an>0,Sn=a1+a2+……+an,且an=6Sn/(an+3) 求Sn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:58:20
已知数列{an}中,an>0,Sn=a1+a2+……+an,且an=6Sn/(an+3) 求Sn
xTMK@+=vMfSRߐ0y(zE{=TTPԊA?F [E*7CBf}̛$UztWY\M^:S1!OssrraKVk1 Kj!l>1AX=,n#{!D1z`^vp7eVvشlQzV218YaI)SDQ>jg~$I4Ib:UΚ ^S.]6^ZI S TFJp[Z$E2U+ 7kM =#s9A/׌QdchS^c,}hc=9כ?+=0,ZC>8zgDy՛/jLKv.%\ T~ ~=Yv0

已知数列{an}中,an>0,Sn=a1+a2+……+an,且an=6Sn/(an+3) 求Sn
已知数列{an}中,an>0,Sn=a1+a2+……+an,且an=6Sn/(an+3) 求Sn

已知数列{an}中,an>0,Sn=a1+a2+……+an,且an=6Sn/(an+3) 求Sn
an=6Sn/(an+3)
an^2+3an=6Sn 1)
a(n-1)^2+3a(n-1)=6S(n-1) 2)
an=Sn-S(n-1) 3)
1)-2)再代入3)整理有
(An-A(n-1))*(An+A(n-1))=3*(An+A(n-1)) 4)
An>0
An+A(n-1)>0
由4)得到
An-A(n-1)=3
3为常数,所以An为等差数列
A1^2+3*A1=6S1=6A1
A1=3
An=A1+(n-1)*d=3+(n-1)*3=3n
Sn=A1+A2+...+An=3*(1+2+3+...+n)=3*(1+n)*n/2

由题意知:an=6Sn/(an+3)
an^2+3an=6Sn
a(n-1)^2+3a(n-1)=6S(n-1)
6an=6Sn-6S(n-1)
(an-a(n-1))*(an+a(n-1))=3*(an+a(n-1))
an>0
an+a(n-1)>0
因此
an-...

全部展开

由题意知:an=6Sn/(an+3)
an^2+3an=6Sn
a(n-1)^2+3a(n-1)=6S(n-1)
6an=6Sn-6S(n-1)
(an-a(n-1))*(an+a(n-1))=3*(an+a(n-1))
an>0
an+a(n-1)>0
因此
an-a(n-1)=3
3为常数,所以an为等差数列
a1^2+3*a1=6S1=6a1
a1=3
an=a1+(n-1)*d=3+(n-1)*3=3n
Sn=a1+a2+...+an=3*(1+2+3+...+n)=3*(1+n)*n/2

收起