已知{an}是公差不为0的等差数列,{bn}是等比数列,其中a1=3,b1=1,a2=b2,3a5=b3,且存已知{an}是公差不为0的等差数列,{bn}是等比数列,其中a1=3,b1=1,a2=b2,3a5=b3,且存在常数α,β使得对每一个正整数n都有
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 00:22:54
已知{an}是公差不为0的等差数列,{bn}是等比数列,其中a1=3,b1=1,a2=b2,3a5=b3,且存已知{an}是公差不为0的等差数列,{bn}是等比数列,其中a1=3,b1=1,a2=b2,3a5=b3,且存在常数α,β使得对每一个正整数n都有
已知{an}是公差不为0的等差数列,{bn}是等比数列,其中a1=3,b1=1,a2=b2,3a5=b3,且存
已知{an}是公差不为0的等差数列,{bn}是等比数列,其中a1=3,b1=1,a2=b2,3a5=b3,且存在常数α,β使得对每一个正整数n都有an=logαbn+β,则α+β=
已知{an}是公差不为0的等差数列,{bn}是等比数列,其中a1=3,b1=1,a2=b2,3a5=b3,且存已知{an}是公差不为0的等差数列,{bn}是等比数列,其中a1=3,b1=1,a2=b2,3a5=b3,且存在常数α,β使得对每一个正整数n都有
设{an}的公差为d,{bn}的公比为q,则有
a2=3+d=q=b2
3a5=3(3+4d)=q^2=b3
解方程得q=3,q=9,当q=3时,d=0,不符合题意,故舍去;当q=时,求得d=6.
故an=3+(n-1)*6=6n-3;
bn=1*q^(n-1)=9^(n-1)=3^(2n-2)
n=1
6-3=logα3^(0)+β
β=3
n=2
12-3=logα3^(2)+3
α=3^(1/3)
α+β=3^(1/3)+3
设{an}的公差为d,,{bn}的公比为q,则有
a2=3+d=q=b2
3a5=3(3+4d)=q^2=b3
解方程得q=3,q=9,当q=3时,d=0,不符合题意,故舍去;当q=时,求得d=6。
故an=3+(n-1)*6=6n-3;
bn=1*q^(n-1)=9^(n-1)=3^(2n-2)
因an=logαbn+β,所以6n-3=logα...
全部展开
设{an}的公差为d,,{bn}的公比为q,则有
a2=3+d=q=b2
3a5=3(3+4d)=q^2=b3
解方程得q=3,q=9,当q=3时,d=0,不符合题意,故舍去;当q=时,求得d=6。
故an=3+(n-1)*6=6n-3;
bn=1*q^(n-1)=9^(n-1)=3^(2n-2)
因an=logαbn+β,所以6n-3=logα3^(2n-2)+β,α=3,β=4n-1,
α+β=3+4n-1=4n+2
收起